Evaluate
\frac{253}{6}\approx 42.166666667
Factor
\frac{11 \cdot 23}{2 \cdot 3} = 42\frac{1}{6} = 42.166666666666664
Share
Copied to clipboard
\frac{\frac{9}{12}-\frac{2}{12}+\frac{3}{8}}{\frac{1}{44}}
Least common multiple of 4 and 6 is 12. Convert \frac{3}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{\frac{9-2}{12}+\frac{3}{8}}{\frac{1}{44}}
Since \frac{9}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{7}{12}+\frac{3}{8}}{\frac{1}{44}}
Subtract 2 from 9 to get 7.
\frac{\frac{14}{24}+\frac{9}{24}}{\frac{1}{44}}
Least common multiple of 12 and 8 is 24. Convert \frac{7}{12} and \frac{3}{8} to fractions with denominator 24.
\frac{\frac{14+9}{24}}{\frac{1}{44}}
Since \frac{14}{24} and \frac{9}{24} have the same denominator, add them by adding their numerators.
\frac{\frac{23}{24}}{\frac{1}{44}}
Add 14 and 9 to get 23.
\frac{23}{24}\times 44
Divide \frac{23}{24} by \frac{1}{44} by multiplying \frac{23}{24} by the reciprocal of \frac{1}{44}.
\frac{23\times 44}{24}
Express \frac{23}{24}\times 44 as a single fraction.
\frac{1012}{24}
Multiply 23 and 44 to get 1012.
\frac{253}{6}
Reduce the fraction \frac{1012}{24} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}