Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3}{20}a\right)^{2}-\left(\frac{7}{2}b\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{3}{20}\right)^{2}a^{2}-\left(\frac{7}{2}b\right)^{2}
Expand \left(\frac{3}{20}a\right)^{2}.
\frac{9}{400}a^{2}-\left(\frac{7}{2}b\right)^{2}
Calculate \frac{3}{20} to the power of 2 and get \frac{9}{400}.
\frac{9}{400}a^{2}-\left(\frac{7}{2}\right)^{2}b^{2}
Expand \left(\frac{7}{2}b\right)^{2}.
\frac{9}{400}a^{2}-\frac{49}{4}b^{2}
Calculate \frac{7}{2} to the power of 2 and get \frac{49}{4}.
\left(\frac{3}{20}a\right)^{2}-\left(\frac{7}{2}b\right)^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{3}{20}\right)^{2}a^{2}-\left(\frac{7}{2}b\right)^{2}
Expand \left(\frac{3}{20}a\right)^{2}.
\frac{9}{400}a^{2}-\left(\frac{7}{2}b\right)^{2}
Calculate \frac{3}{20} to the power of 2 and get \frac{9}{400}.
\frac{9}{400}a^{2}-\left(\frac{7}{2}\right)^{2}b^{2}
Expand \left(\frac{7}{2}b\right)^{2}.
\frac{9}{400}a^{2}-\frac{49}{4}b^{2}
Calculate \frac{7}{2} to the power of 2 and get \frac{49}{4}.