Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y\left(-\frac{1}{2}\right)y-\frac{1}{3}x\left(-\frac{4}{5}\right)x-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Apply the distributive property by multiplying each term of \frac{3}{2}y-\frac{1}{3}x by each term of -\frac{4}{5}x-\frac{1}{2}y.
\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x\left(-\frac{4}{5}\right)x-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply y and y to get y^{2}.
\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply x and x to get x^{2}.
\frac{3\left(-4\right)}{2\times 5}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply \frac{3}{2} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-12}{10}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{3\left(-4\right)}{2\times 5}.
-\frac{6}{5}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Reduce the fraction \frac{-12}{10} to lowest terms by extracting and canceling out 2.
-\frac{6}{5}yx+\frac{3\left(-1\right)}{2\times 2}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply \frac{3}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx+\frac{-3}{4}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{3\left(-1\right)}{2\times 2}.
-\frac{6}{5}yx-\frac{3}{4}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{-\left(-4\right)}{3\times 5}x^{2}-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply -\frac{1}{3} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{-\left(-4\right)}{3\times 5}.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}+\frac{-\left(-1\right)}{3\times 2}xy
Multiply -\frac{1}{3} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}+\frac{1}{6}xy
Do the multiplications in the fraction \frac{-\left(-1\right)}{3\times 2}.
-\frac{31}{30}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}
Combine -\frac{6}{5}yx and \frac{1}{6}xy to get -\frac{31}{30}yx.
\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y\left(-\frac{1}{2}\right)y-\frac{1}{3}x\left(-\frac{4}{5}\right)x-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Apply the distributive property by multiplying each term of \frac{3}{2}y-\frac{1}{3}x by each term of -\frac{4}{5}x-\frac{1}{2}y.
\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x\left(-\frac{4}{5}\right)x-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply y and y to get y^{2}.
\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply x and x to get x^{2}.
\frac{3\left(-4\right)}{2\times 5}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply \frac{3}{2} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-12}{10}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{3\left(-4\right)}{2\times 5}.
-\frac{6}{5}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Reduce the fraction \frac{-12}{10} to lowest terms by extracting and canceling out 2.
-\frac{6}{5}yx+\frac{3\left(-1\right)}{2\times 2}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply \frac{3}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx+\frac{-3}{4}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{3\left(-1\right)}{2\times 2}.
-\frac{6}{5}yx-\frac{3}{4}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{-\left(-4\right)}{3\times 5}x^{2}-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply -\frac{1}{3} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{-\left(-4\right)}{3\times 5}.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}+\frac{-\left(-1\right)}{3\times 2}xy
Multiply -\frac{1}{3} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}+\frac{1}{6}xy
Do the multiplications in the fraction \frac{-\left(-1\right)}{3\times 2}.
-\frac{31}{30}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}
Combine -\frac{6}{5}yx and \frac{1}{6}xy to get -\frac{31}{30}yx.