Evaluate
-\frac{\left(9y-2x\right)\left(8x+5y\right)}{60}
Expand
-\frac{31xy}{30}+\frac{4x^{2}}{15}-\frac{3y^{2}}{4}
Share
Copied to clipboard
\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y\left(-\frac{1}{2}\right)y-\frac{1}{3}x\left(-\frac{4}{5}\right)x-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Apply the distributive property by multiplying each term of \frac{3}{2}y-\frac{1}{3}x by each term of -\frac{4}{5}x-\frac{1}{2}y.
\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x\left(-\frac{4}{5}\right)x-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply y and y to get y^{2}.
\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply x and x to get x^{2}.
\frac{3\left(-4\right)}{2\times 5}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply \frac{3}{2} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-12}{10}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{3\left(-4\right)}{2\times 5}.
-\frac{6}{5}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Reduce the fraction \frac{-12}{10} to lowest terms by extracting and canceling out 2.
-\frac{6}{5}yx+\frac{3\left(-1\right)}{2\times 2}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply \frac{3}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx+\frac{-3}{4}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{3\left(-1\right)}{2\times 2}.
-\frac{6}{5}yx-\frac{3}{4}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{-\left(-4\right)}{3\times 5}x^{2}-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply -\frac{1}{3} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{-\left(-4\right)}{3\times 5}.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}+\frac{-\left(-1\right)}{3\times 2}xy
Multiply -\frac{1}{3} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}+\frac{1}{6}xy
Do the multiplications in the fraction \frac{-\left(-1\right)}{3\times 2}.
-\frac{31}{30}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}
Combine -\frac{6}{5}yx and \frac{1}{6}xy to get -\frac{31}{30}yx.
\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y\left(-\frac{1}{2}\right)y-\frac{1}{3}x\left(-\frac{4}{5}\right)x-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Apply the distributive property by multiplying each term of \frac{3}{2}y-\frac{1}{3}x by each term of -\frac{4}{5}x-\frac{1}{2}y.
\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x\left(-\frac{4}{5}\right)x-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply y and y to get y^{2}.
\frac{3}{2}y\left(-\frac{4}{5}\right)x+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply x and x to get x^{2}.
\frac{3\left(-4\right)}{2\times 5}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply \frac{3}{2} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-12}{10}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{3\left(-4\right)}{2\times 5}.
-\frac{6}{5}yx+\frac{3}{2}y^{2}\left(-\frac{1}{2}\right)-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Reduce the fraction \frac{-12}{10} to lowest terms by extracting and canceling out 2.
-\frac{6}{5}yx+\frac{3\left(-1\right)}{2\times 2}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply \frac{3}{2} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx+\frac{-3}{4}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{3\left(-1\right)}{2\times 2}.
-\frac{6}{5}yx-\frac{3}{4}y^{2}-\frac{1}{3}x^{2}\left(-\frac{4}{5}\right)-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{-\left(-4\right)}{3\times 5}x^{2}-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Multiply -\frac{1}{3} times -\frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}-\frac{1}{3}x\left(-\frac{1}{2}\right)y
Do the multiplications in the fraction \frac{-\left(-4\right)}{3\times 5}.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}+\frac{-\left(-1\right)}{3\times 2}xy
Multiply -\frac{1}{3} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{6}{5}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}+\frac{1}{6}xy
Do the multiplications in the fraction \frac{-\left(-1\right)}{3\times 2}.
-\frac{31}{30}yx-\frac{3}{4}y^{2}+\frac{4}{15}x^{2}
Combine -\frac{6}{5}yx and \frac{1}{6}xy to get -\frac{31}{30}yx.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}