Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\left(\frac{3}{2}\right)^{2}\left(x^{2}\right)^{2}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
Expand \left(\frac{3}{2}x^{2}y\right)^{2}.
\frac{\left(\frac{3}{2}\right)^{2}x^{4}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{9}{4}x^{4}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{\frac{9}{4}x^{4}y^{2}\left(-2\right)^{3}x^{3}y^{3}}{-3x^{6}y^{5}}
Expand \left(-2xy\right)^{3}.
\frac{\frac{9}{4}x^{4}y^{2}\left(-8\right)x^{3}y^{3}}{-3x^{6}y^{5}}
Calculate -2 to the power of 3 and get -8.
\frac{-18x^{4}y^{2}x^{3}y^{3}}{-3x^{6}y^{5}}
Multiply \frac{9}{4} and -8 to get -18.
\frac{-18x^{7}y^{2}y^{3}}{-3x^{6}y^{5}}
To multiply powers of the same base, add their exponents. Add 4 and 3 to get 7.
\frac{-18x^{7}y^{5}}{-3x^{6}y^{5}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{-6x}{-1}
Cancel out 3y^{5}x^{6} in both numerator and denominator.
6x
Anything divided by -1 gives its opposite.
\frac{\left(\frac{3}{2}\right)^{2}\left(x^{2}\right)^{2}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
Expand \left(\frac{3}{2}x^{2}y\right)^{2}.
\frac{\left(\frac{3}{2}\right)^{2}x^{4}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{9}{4}x^{4}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{\frac{9}{4}x^{4}y^{2}\left(-2\right)^{3}x^{3}y^{3}}{-3x^{6}y^{5}}
Expand \left(-2xy\right)^{3}.
\frac{\frac{9}{4}x^{4}y^{2}\left(-8\right)x^{3}y^{3}}{-3x^{6}y^{5}}
Calculate -2 to the power of 3 and get -8.
\frac{-18x^{4}y^{2}x^{3}y^{3}}{-3x^{6}y^{5}}
Multiply \frac{9}{4} and -8 to get -18.
\frac{-18x^{7}y^{2}y^{3}}{-3x^{6}y^{5}}
To multiply powers of the same base, add their exponents. Add 4 and 3 to get 7.
\frac{-18x^{7}y^{5}}{-3x^{6}y^{5}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{-6x}{-1}
Cancel out 3y^{5}x^{6} in both numerator and denominator.
6x
Anything divided by -1 gives its opposite.