Evaluate
6x
Expand
6x
Share
Copied to clipboard
\frac{\left(\frac{3}{2}\right)^{2}\left(x^{2}\right)^{2}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
Expand \left(\frac{3}{2}x^{2}y\right)^{2}.
\frac{\left(\frac{3}{2}\right)^{2}x^{4}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{9}{4}x^{4}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{\frac{9}{4}x^{4}y^{2}\left(-2\right)^{3}x^{3}y^{3}}{-3x^{6}y^{5}}
Expand \left(-2xy\right)^{3}.
\frac{\frac{9}{4}x^{4}y^{2}\left(-8\right)x^{3}y^{3}}{-3x^{6}y^{5}}
Calculate -2 to the power of 3 and get -8.
\frac{-18x^{4}y^{2}x^{3}y^{3}}{-3x^{6}y^{5}}
Multiply \frac{9}{4} and -8 to get -18.
\frac{-18x^{7}y^{2}y^{3}}{-3x^{6}y^{5}}
To multiply powers of the same base, add their exponents. Add 4 and 3 to get 7.
\frac{-18x^{7}y^{5}}{-3x^{6}y^{5}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{-6x}{-1}
Cancel out 3y^{5}x^{6} in both numerator and denominator.
6x
Anything divided by -1 gives its opposite.
\frac{\left(\frac{3}{2}\right)^{2}\left(x^{2}\right)^{2}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
Expand \left(\frac{3}{2}x^{2}y\right)^{2}.
\frac{\left(\frac{3}{2}\right)^{2}x^{4}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{9}{4}x^{4}y^{2}\left(-2xy\right)^{3}}{-3x^{6}y^{5}}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{\frac{9}{4}x^{4}y^{2}\left(-2\right)^{3}x^{3}y^{3}}{-3x^{6}y^{5}}
Expand \left(-2xy\right)^{3}.
\frac{\frac{9}{4}x^{4}y^{2}\left(-8\right)x^{3}y^{3}}{-3x^{6}y^{5}}
Calculate -2 to the power of 3 and get -8.
\frac{-18x^{4}y^{2}x^{3}y^{3}}{-3x^{6}y^{5}}
Multiply \frac{9}{4} and -8 to get -18.
\frac{-18x^{7}y^{2}y^{3}}{-3x^{6}y^{5}}
To multiply powers of the same base, add their exponents. Add 4 and 3 to get 7.
\frac{-18x^{7}y^{5}}{-3x^{6}y^{5}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{-6x}{-1}
Cancel out 3y^{5}x^{6} in both numerator and denominator.
6x
Anything divided by -1 gives its opposite.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}