Solve for a (complex solution)
a\in \mathrm{C}
Solve for b (complex solution)
b\in \mathrm{C}
Solve for a
a\in \mathrm{R}
Solve for b
b\in \mathrm{R}
Share
Copied to clipboard
\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Multiply \frac{3}{2}a-\frac{2}{3}b and \frac{3}{2}a-\frac{2}{3}b to get \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}-\frac{9}{4}a^{2}=-2ab+\frac{4}{9}b^{2}
Subtract \frac{9}{4}a^{2} from both sides.
-2ab+\frac{4}{9}b^{2}=-2ab+\frac{4}{9}b^{2}
Combine \frac{9}{4}a^{2} and -\frac{9}{4}a^{2} to get 0.
-2ab+\frac{4}{9}b^{2}+2ab=\frac{4}{9}b^{2}
Add 2ab to both sides.
\frac{4}{9}b^{2}=\frac{4}{9}b^{2}
Combine -2ab and 2ab to get 0.
b^{2}=b^{2}
Cancel out \frac{4}{9} on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Multiply \frac{3}{2}a-\frac{2}{3}b and \frac{3}{2}a-\frac{2}{3}b to get \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}+2ab=\frac{9}{4}a^{2}+\frac{4}{9}b^{2}
Add 2ab to both sides.
\frac{9}{4}a^{2}+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}+\frac{4}{9}b^{2}
Combine -2ab and 2ab to get 0.
\frac{9}{4}a^{2}+\frac{4}{9}b^{2}-\frac{4}{9}b^{2}=\frac{9}{4}a^{2}
Subtract \frac{4}{9}b^{2} from both sides.
\frac{9}{4}a^{2}=\frac{9}{4}a^{2}
Combine \frac{4}{9}b^{2} and -\frac{4}{9}b^{2} to get 0.
a^{2}=a^{2}
Cancel out \frac{9}{4} on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Multiply \frac{3}{2}a-\frac{2}{3}b and \frac{3}{2}a-\frac{2}{3}b to get \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}-\frac{9}{4}a^{2}=-2ab+\frac{4}{9}b^{2}
Subtract \frac{9}{4}a^{2} from both sides.
-2ab+\frac{4}{9}b^{2}=-2ab+\frac{4}{9}b^{2}
Combine \frac{9}{4}a^{2} and -\frac{9}{4}a^{2} to get 0.
-2ab+\frac{4}{9}b^{2}+2ab=\frac{4}{9}b^{2}
Add 2ab to both sides.
\frac{4}{9}b^{2}=\frac{4}{9}b^{2}
Combine -2ab and 2ab to get 0.
b^{2}=b^{2}
Cancel out \frac{4}{9} on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Multiply \frac{3}{2}a-\frac{2}{3}b and \frac{3}{2}a-\frac{2}{3}b to get \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}+2ab=\frac{9}{4}a^{2}+\frac{4}{9}b^{2}
Add 2ab to both sides.
\frac{9}{4}a^{2}+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}+\frac{4}{9}b^{2}
Combine -2ab and 2ab to get 0.
\frac{9}{4}a^{2}+\frac{4}{9}b^{2}-\frac{4}{9}b^{2}=\frac{9}{4}a^{2}
Subtract \frac{4}{9}b^{2} from both sides.
\frac{9}{4}a^{2}=\frac{9}{4}a^{2}
Combine \frac{4}{9}b^{2} and -\frac{4}{9}b^{2} to get 0.
a^{2}=a^{2}
Cancel out \frac{9}{4} on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}