Skip to main content
Solve for a (complex solution)
Tick mark Image
Solve for b (complex solution)
Tick mark Image
Solve for a
Tick mark Image
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Multiply \frac{3}{2}a-\frac{2}{3}b and \frac{3}{2}a-\frac{2}{3}b to get \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}-\frac{9}{4}a^{2}=-2ab+\frac{4}{9}b^{2}
Subtract \frac{9}{4}a^{2} from both sides.
-2ab+\frac{4}{9}b^{2}=-2ab+\frac{4}{9}b^{2}
Combine \frac{9}{4}a^{2} and -\frac{9}{4}a^{2} to get 0.
-2ab+\frac{4}{9}b^{2}+2ab=\frac{4}{9}b^{2}
Add 2ab to both sides.
\frac{4}{9}b^{2}=\frac{4}{9}b^{2}
Combine -2ab and 2ab to get 0.
b^{2}=b^{2}
Cancel out \frac{4}{9} on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{C}
This is true for any a.
\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Multiply \frac{3}{2}a-\frac{2}{3}b and \frac{3}{2}a-\frac{2}{3}b to get \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}+2ab=\frac{9}{4}a^{2}+\frac{4}{9}b^{2}
Add 2ab to both sides.
\frac{9}{4}a^{2}+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}+\frac{4}{9}b^{2}
Combine -2ab and 2ab to get 0.
\frac{9}{4}a^{2}+\frac{4}{9}b^{2}-\frac{4}{9}b^{2}=\frac{9}{4}a^{2}
Subtract \frac{4}{9}b^{2} from both sides.
\frac{9}{4}a^{2}=\frac{9}{4}a^{2}
Combine \frac{4}{9}b^{2} and -\frac{4}{9}b^{2} to get 0.
a^{2}=a^{2}
Cancel out \frac{9}{4} on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{C}
This is true for any b.
\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Multiply \frac{3}{2}a-\frac{2}{3}b and \frac{3}{2}a-\frac{2}{3}b to get \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}-\frac{9}{4}a^{2}=-2ab+\frac{4}{9}b^{2}
Subtract \frac{9}{4}a^{2} from both sides.
-2ab+\frac{4}{9}b^{2}=-2ab+\frac{4}{9}b^{2}
Combine \frac{9}{4}a^{2} and -\frac{9}{4}a^{2} to get 0.
-2ab+\frac{4}{9}b^{2}+2ab=\frac{4}{9}b^{2}
Add 2ab to both sides.
\frac{4}{9}b^{2}=\frac{4}{9}b^{2}
Combine -2ab and 2ab to get 0.
b^{2}=b^{2}
Cancel out \frac{4}{9} on both sides.
\text{true}
Reorder the terms.
a\in \mathrm{R}
This is true for any a.
\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Multiply \frac{3}{2}a-\frac{2}{3}b and \frac{3}{2}a-\frac{2}{3}b to get \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}
Use binomial theorem \left(p-q\right)^{2}=p^{2}-2pq+q^{2} to expand \left(\frac{3}{2}a-\frac{2}{3}b\right)^{2}.
\frac{9}{4}a^{2}-2ab+\frac{4}{9}b^{2}+2ab=\frac{9}{4}a^{2}+\frac{4}{9}b^{2}
Add 2ab to both sides.
\frac{9}{4}a^{2}+\frac{4}{9}b^{2}=\frac{9}{4}a^{2}+\frac{4}{9}b^{2}
Combine -2ab and 2ab to get 0.
\frac{9}{4}a^{2}+\frac{4}{9}b^{2}-\frac{4}{9}b^{2}=\frac{9}{4}a^{2}
Subtract \frac{4}{9}b^{2} from both sides.
\frac{9}{4}a^{2}=\frac{9}{4}a^{2}
Combine \frac{4}{9}b^{2} and -\frac{4}{9}b^{2} to get 0.
a^{2}=a^{2}
Cancel out \frac{9}{4} on both sides.
\text{true}
Reorder the terms.
b\in \mathrm{R}
This is true for any b.