( \frac { 3 } { 2 } ( x - 2 ) ] - ( x + 4 ) > ( \frac { 1 } { 3 } ( 2 x + 5 ) ] + x
Solve for x
x<-\frac{52}{7}
Graph
Share
Copied to clipboard
\frac{3}{2}x+\frac{3}{2}\left(-2\right)-\left(x+4\right)>\frac{1}{3}\left(2x+5\right)+x
Use the distributive property to multiply \frac{3}{2} by x-2.
\frac{3}{2}x+\frac{3\left(-2\right)}{2}-\left(x+4\right)>\frac{1}{3}\left(2x+5\right)+x
Express \frac{3}{2}\left(-2\right) as a single fraction.
\frac{3}{2}x+\frac{-6}{2}-\left(x+4\right)>\frac{1}{3}\left(2x+5\right)+x
Multiply 3 and -2 to get -6.
\frac{3}{2}x-3-\left(x+4\right)>\frac{1}{3}\left(2x+5\right)+x
Divide -6 by 2 to get -3.
\frac{3}{2}x-3-x-4>\frac{1}{3}\left(2x+5\right)+x
To find the opposite of x+4, find the opposite of each term.
\frac{1}{2}x-3-4>\frac{1}{3}\left(2x+5\right)+x
Combine \frac{3}{2}x and -x to get \frac{1}{2}x.
\frac{1}{2}x-7>\frac{1}{3}\left(2x+5\right)+x
Subtract 4 from -3 to get -7.
\frac{1}{2}x-7>\frac{1}{3}\times 2x+\frac{1}{3}\times 5+x
Use the distributive property to multiply \frac{1}{3} by 2x+5.
\frac{1}{2}x-7>\frac{2}{3}x+\frac{1}{3}\times 5+x
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{1}{2}x-7>\frac{2}{3}x+\frac{5}{3}+x
Multiply \frac{1}{3} and 5 to get \frac{5}{3}.
\frac{1}{2}x-7>\frac{5}{3}x+\frac{5}{3}
Combine \frac{2}{3}x and x to get \frac{5}{3}x.
\frac{1}{2}x-7-\frac{5}{3}x>\frac{5}{3}
Subtract \frac{5}{3}x from both sides.
-\frac{7}{6}x-7>\frac{5}{3}
Combine \frac{1}{2}x and -\frac{5}{3}x to get -\frac{7}{6}x.
-\frac{7}{6}x>\frac{5}{3}+7
Add 7 to both sides.
-\frac{7}{6}x>\frac{5}{3}+\frac{21}{3}
Convert 7 to fraction \frac{21}{3}.
-\frac{7}{6}x>\frac{5+21}{3}
Since \frac{5}{3} and \frac{21}{3} have the same denominator, add them by adding their numerators.
-\frac{7}{6}x>\frac{26}{3}
Add 5 and 21 to get 26.
x<\frac{26}{3}\left(-\frac{6}{7}\right)
Multiply both sides by -\frac{6}{7}, the reciprocal of -\frac{7}{6}. Since -\frac{7}{6} is negative, the inequality direction is changed.
x<\frac{26\left(-6\right)}{3\times 7}
Multiply \frac{26}{3} times -\frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
x<\frac{-156}{21}
Do the multiplications in the fraction \frac{26\left(-6\right)}{3\times 7}.
x<-\frac{52}{7}
Reduce the fraction \frac{-156}{21} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}