Solve for k
k = -\frac{11}{10} = -1\frac{1}{10} = -1.1
Share
Copied to clipboard
\frac{\frac{3}{3\sqrt{2}}-\sqrt{72}}{\sqrt{50}}=k
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{\frac{3\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}-\sqrt{72}}{\sqrt{50}}=k
Rationalize the denominator of \frac{3}{3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{3\sqrt{2}}{3\times 2}-\sqrt{72}}{\sqrt{50}}=k
The square of \sqrt{2} is 2.
\frac{\frac{\sqrt{2}}{2}-\sqrt{72}}{\sqrt{50}}=k
Cancel out 3 in both numerator and denominator.
\frac{\frac{\sqrt{2}}{2}-6\sqrt{2}}{\sqrt{50}}=k
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
\frac{-\frac{11}{2}\sqrt{2}}{\sqrt{50}}=k
Combine \frac{\sqrt{2}}{2} and -6\sqrt{2} to get -\frac{11}{2}\sqrt{2}.
\frac{-\frac{11}{2}\sqrt{2}}{5\sqrt{2}}=k
Factor 50=5^{2}\times 2. Rewrite the square root of the product \sqrt{5^{2}\times 2} as the product of square roots \sqrt{5^{2}}\sqrt{2}. Take the square root of 5^{2}.
\frac{-\frac{11}{2}}{5}=k
Cancel out \sqrt{2} in both numerator and denominator.
\frac{-11}{2\times 5}=k
Express \frac{-\frac{11}{2}}{5} as a single fraction.
\frac{-11}{10}=k
Multiply 2 and 5 to get 10.
-\frac{11}{10}=k
Fraction \frac{-11}{10} can be rewritten as -\frac{11}{10} by extracting the negative sign.
k=-\frac{11}{10}
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}