Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{3\times 3\sqrt{46}}{69}-\frac{2\times 23}{69}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 23 and 3 is 69. Multiply \frac{3\sqrt{46}}{23} times \frac{3}{3}. Multiply \frac{2}{3} times \frac{23}{23}.
\left(\frac{3\times 3\sqrt{46}-2\times 23}{69}\right)^{2}
Since \frac{3\times 3\sqrt{46}}{69} and \frac{2\times 23}{69} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{9\sqrt{46}-46}{69}\right)^{2}
Do the multiplications in 3\times 3\sqrt{46}-2\times 23.
\frac{\left(9\sqrt{46}-46\right)^{2}}{69^{2}}
To raise \frac{9\sqrt{46}-46}{69} to a power, raise both numerator and denominator to the power and then divide.
\frac{81\left(\sqrt{46}\right)^{2}-828\sqrt{46}+2116}{69^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9\sqrt{46}-46\right)^{2}.
\frac{81\times 46-828\sqrt{46}+2116}{69^{2}}
The square of \sqrt{46} is 46.
\frac{3726-828\sqrt{46}+2116}{69^{2}}
Multiply 81 and 46 to get 3726.
\frac{5842-828\sqrt{46}}{69^{2}}
Add 3726 and 2116 to get 5842.
\frac{5842-828\sqrt{46}}{4761}
Calculate 69 to the power of 2 and get 4761.
\left(\frac{3\times 3\sqrt{46}}{69}-\frac{2\times 23}{69}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 23 and 3 is 69. Multiply \frac{3\sqrt{46}}{23} times \frac{3}{3}. Multiply \frac{2}{3} times \frac{23}{23}.
\left(\frac{3\times 3\sqrt{46}-2\times 23}{69}\right)^{2}
Since \frac{3\times 3\sqrt{46}}{69} and \frac{2\times 23}{69} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{9\sqrt{46}-46}{69}\right)^{2}
Do the multiplications in 3\times 3\sqrt{46}-2\times 23.
\frac{\left(9\sqrt{46}-46\right)^{2}}{69^{2}}
To raise \frac{9\sqrt{46}-46}{69} to a power, raise both numerator and denominator to the power and then divide.
\frac{81\left(\sqrt{46}\right)^{2}-828\sqrt{46}+2116}{69^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9\sqrt{46}-46\right)^{2}.
\frac{81\times 46-828\sqrt{46}+2116}{69^{2}}
The square of \sqrt{46} is 46.
\frac{3726-828\sqrt{46}+2116}{69^{2}}
Multiply 81 and 46 to get 3726.
\frac{5842-828\sqrt{46}}{69^{2}}
Add 3726 and 2116 to get 5842.
\frac{5842-828\sqrt{46}}{4761}
Calculate 69 to the power of 2 and get 4761.