Evaluate
-\frac{4\sqrt{46}}{23}+\frac{254}{207}\approx 0.047517491
Expand
-\frac{4 \sqrt{46}}{23} + \frac{254}{207} = 0.047517491
Quiz
Arithmetic
5 problems similar to:
( \frac { 3 \sqrt { 46 } } { 23 } - \frac { 2 } { 3 } ) ^ { 2 }
Share
Copied to clipboard
\left(\frac{3\times 3\sqrt{46}}{69}-\frac{2\times 23}{69}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 23 and 3 is 69. Multiply \frac{3\sqrt{46}}{23} times \frac{3}{3}. Multiply \frac{2}{3} times \frac{23}{23}.
\left(\frac{3\times 3\sqrt{46}-2\times 23}{69}\right)^{2}
Since \frac{3\times 3\sqrt{46}}{69} and \frac{2\times 23}{69} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{9\sqrt{46}-46}{69}\right)^{2}
Do the multiplications in 3\times 3\sqrt{46}-2\times 23.
\frac{\left(9\sqrt{46}-46\right)^{2}}{69^{2}}
To raise \frac{9\sqrt{46}-46}{69} to a power, raise both numerator and denominator to the power and then divide.
\frac{81\left(\sqrt{46}\right)^{2}-828\sqrt{46}+2116}{69^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9\sqrt{46}-46\right)^{2}.
\frac{81\times 46-828\sqrt{46}+2116}{69^{2}}
The square of \sqrt{46} is 46.
\frac{3726-828\sqrt{46}+2116}{69^{2}}
Multiply 81 and 46 to get 3726.
\frac{5842-828\sqrt{46}}{69^{2}}
Add 3726 and 2116 to get 5842.
\frac{5842-828\sqrt{46}}{4761}
Calculate 69 to the power of 2 and get 4761.
\left(\frac{3\times 3\sqrt{46}}{69}-\frac{2\times 23}{69}\right)^{2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 23 and 3 is 69. Multiply \frac{3\sqrt{46}}{23} times \frac{3}{3}. Multiply \frac{2}{3} times \frac{23}{23}.
\left(\frac{3\times 3\sqrt{46}-2\times 23}{69}\right)^{2}
Since \frac{3\times 3\sqrt{46}}{69} and \frac{2\times 23}{69} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{9\sqrt{46}-46}{69}\right)^{2}
Do the multiplications in 3\times 3\sqrt{46}-2\times 23.
\frac{\left(9\sqrt{46}-46\right)^{2}}{69^{2}}
To raise \frac{9\sqrt{46}-46}{69} to a power, raise both numerator and denominator to the power and then divide.
\frac{81\left(\sqrt{46}\right)^{2}-828\sqrt{46}+2116}{69^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(9\sqrt{46}-46\right)^{2}.
\frac{81\times 46-828\sqrt{46}+2116}{69^{2}}
The square of \sqrt{46} is 46.
\frac{3726-828\sqrt{46}+2116}{69^{2}}
Multiply 81 and 46 to get 3726.
\frac{5842-828\sqrt{46}}{69^{2}}
Add 3726 and 2116 to get 5842.
\frac{5842-828\sqrt{46}}{4761}
Calculate 69 to the power of 2 and get 4761.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}