Solve for a
a = -\frac{3800000 \sqrt{10}}{27} \approx -445061.300319994
a = \frac{3800000 \sqrt{10}}{27} \approx 445061.300319994
Share
Copied to clipboard
\left(\frac{9}{10}\right)^{3}=\left(\frac{3.8\times 10^{5}}{a}\right)^{2}
Reduce the fraction \frac{27}{30} to lowest terms by extracting and canceling out 3.
\frac{729}{1000}=\left(\frac{3.8\times 10^{5}}{a}\right)^{2}
Calculate \frac{9}{10} to the power of 3 and get \frac{729}{1000}.
\frac{729}{1000}=\left(\frac{3.8\times 100000}{a}\right)^{2}
Calculate 10 to the power of 5 and get 100000.
\frac{729}{1000}=\left(\frac{380000}{a}\right)^{2}
Multiply 3.8 and 100000 to get 380000.
\frac{729}{1000}=\frac{380000^{2}}{a^{2}}
To raise \frac{380000}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{729}{1000}=\frac{144400000000}{a^{2}}
Calculate 380000 to the power of 2 and get 144400000000.
\frac{144400000000}{a^{2}}=\frac{729}{1000}
Swap sides so that all variable terms are on the left hand side.
1000\times 144400000000=729a^{2}
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 1000a^{2}, the least common multiple of a^{2},1000.
144400000000000=729a^{2}
Multiply 1000 and 144400000000 to get 144400000000000.
729a^{2}=144400000000000
Swap sides so that all variable terms are on the left hand side.
a^{2}=\frac{144400000000000}{729}
Divide both sides by 729.
a=\frac{3800000\sqrt{10}}{27} a=-\frac{3800000\sqrt{10}}{27}
Take the square root of both sides of the equation.
\left(\frac{9}{10}\right)^{3}=\left(\frac{3.8\times 10^{5}}{a}\right)^{2}
Reduce the fraction \frac{27}{30} to lowest terms by extracting and canceling out 3.
\frac{729}{1000}=\left(\frac{3.8\times 10^{5}}{a}\right)^{2}
Calculate \frac{9}{10} to the power of 3 and get \frac{729}{1000}.
\frac{729}{1000}=\left(\frac{3.8\times 100000}{a}\right)^{2}
Calculate 10 to the power of 5 and get 100000.
\frac{729}{1000}=\left(\frac{380000}{a}\right)^{2}
Multiply 3.8 and 100000 to get 380000.
\frac{729}{1000}=\frac{380000^{2}}{a^{2}}
To raise \frac{380000}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{729}{1000}=\frac{144400000000}{a^{2}}
Calculate 380000 to the power of 2 and get 144400000000.
\frac{144400000000}{a^{2}}=\frac{729}{1000}
Swap sides so that all variable terms are on the left hand side.
\frac{144400000000}{a^{2}}-\frac{729}{1000}=0
Subtract \frac{729}{1000} from both sides.
\frac{144400000000\times 1000}{1000a^{2}}-\frac{729a^{2}}{1000a^{2}}=0
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a^{2} and 1000 is 1000a^{2}. Multiply \frac{144400000000}{a^{2}} times \frac{1000}{1000}. Multiply \frac{729}{1000} times \frac{a^{2}}{a^{2}}.
\frac{144400000000\times 1000-729a^{2}}{1000a^{2}}=0
Since \frac{144400000000\times 1000}{1000a^{2}} and \frac{729a^{2}}{1000a^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{144400000000000-729a^{2}}{1000a^{2}}=0
Do the multiplications in 144400000000\times 1000-729a^{2}.
144400000000000-729a^{2}=0
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 1000a^{2}.
-729a^{2}+144400000000000=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\left(-729\right)\times 144400000000000}}{2\left(-729\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -729 for a, 0 for b, and 144400000000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\left(-729\right)\times 144400000000000}}{2\left(-729\right)}
Square 0.
a=\frac{0±\sqrt{2916\times 144400000000000}}{2\left(-729\right)}
Multiply -4 times -729.
a=\frac{0±\sqrt{421070400000000000}}{2\left(-729\right)}
Multiply 2916 times 144400000000000.
a=\frac{0±205200000\sqrt{10}}{2\left(-729\right)}
Take the square root of 421070400000000000.
a=\frac{0±205200000\sqrt{10}}{-1458}
Multiply 2 times -729.
a=-\frac{3800000\sqrt{10}}{27}
Now solve the equation a=\frac{0±205200000\sqrt{10}}{-1458} when ± is plus.
a=\frac{3800000\sqrt{10}}{27}
Now solve the equation a=\frac{0±205200000\sqrt{10}}{-1458} when ± is minus.
a=-\frac{3800000\sqrt{10}}{27} a=\frac{3800000\sqrt{10}}{27}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}