Evaluate
\frac{125}{8}=15.625
Factor
\frac{5 ^ {3}}{2 ^ {3}} = 15\frac{5}{8} = 15.625
Share
Copied to clipboard
\frac{\left(\frac{25}{4}\right)^{2}\times \left(\frac{2}{5}\right)^{3}\times \left(\frac{8}{125}\right)^{-3}}{\left(\frac{2}{5}\right)^{-7}}
To raise a power to another power, multiply the exponents. Multiply -1 and 7 to get -7.
\left(\frac{8}{125}\right)^{-3}\times \left(\frac{2}{5}\right)^{10}\times \left(\frac{25}{4}\right)^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{1953125}{512}\times \left(\frac{2}{5}\right)^{10}\times \left(\frac{25}{4}\right)^{2}
Calculate \frac{8}{125} to the power of -3 and get \frac{1953125}{512}.
\frac{1953125}{512}\times \frac{1024}{9765625}\times \left(\frac{25}{4}\right)^{2}
Calculate \frac{2}{5} to the power of 10 and get \frac{1024}{9765625}.
\frac{2}{5}\times \left(\frac{25}{4}\right)^{2}
Multiply \frac{1953125}{512} and \frac{1024}{9765625} to get \frac{2}{5}.
\frac{2}{5}\times \frac{625}{16}
Calculate \frac{25}{4} to the power of 2 and get \frac{625}{16}.
\frac{125}{8}
Multiply \frac{2}{5} and \frac{625}{16} to get \frac{125}{8}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}