Evaluate
10y+180-\frac{400}{y}
Expand
10y+180-\frac{400}{y}
Graph
Share
Copied to clipboard
\left(\frac{200}{y}+\frac{10y}{y}\right)\left(y-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 10 times \frac{y}{y}.
\frac{200+10y}{y}\left(y-2\right)
Since \frac{200}{y} and \frac{10y}{y} have the same denominator, add them by adding their numerators.
\frac{\left(200+10y\right)\left(y-2\right)}{y}
Express \frac{200+10y}{y}\left(y-2\right) as a single fraction.
\frac{200y-400+10y^{2}-20y}{y}
Apply the distributive property by multiplying each term of 200+10y by each term of y-2.
\frac{180y-400+10y^{2}}{y}
Combine 200y and -20y to get 180y.
\left(\frac{200}{y}+\frac{10y}{y}\right)\left(y-2\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 10 times \frac{y}{y}.
\frac{200+10y}{y}\left(y-2\right)
Since \frac{200}{y} and \frac{10y}{y} have the same denominator, add them by adding their numerators.
\frac{\left(200+10y\right)\left(y-2\right)}{y}
Express \frac{200+10y}{y}\left(y-2\right) as a single fraction.
\frac{200y-400+10y^{2}-20y}{y}
Apply the distributive property by multiplying each term of 200+10y by each term of y-2.
\frac{180y-400+10y^{2}}{y}
Combine 200y and -20y to get 180y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}