Skip to main content
Evaluate (complex solution)
true
Tick mark Image
Solve for x
Tick mark Image
Solve for p
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{p}{3x}\right)^{3}=\left(\frac{p}{3x}\right)^{3}\text{ and }\left(\frac{p}{3x}\right)^{3}=\frac{p^{3}}{27x^{3}}
Cancel out 2x in both numerator and denominator.
\frac{p^{3}}{\left(3x\right)^{3}}=\left(\frac{p}{3x}\right)^{3}\text{ and }\left(\frac{p}{3x}\right)^{3}=\frac{p^{3}}{27x^{3}}
To raise \frac{p}{3x} to a power, raise both numerator and denominator to the power and then divide.
\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{\left(3x\right)^{3}}\text{ and }\left(\frac{p}{3x}\right)^{3}=\frac{p^{3}}{27x^{3}}
To raise \frac{p}{3x} to a power, raise both numerator and denominator to the power and then divide.
\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{\left(3x\right)^{3}}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
To raise \frac{p}{3x} to a power, raise both numerator and denominator to the power and then divide.
\frac{p^{3}}{3^{3}x^{3}}=\frac{p^{3}}{\left(3x\right)^{3}}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Expand \left(3x\right)^{3}.
\frac{p^{3}}{27x^{3}}=\frac{p^{3}}{\left(3x\right)^{3}}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Calculate 3 to the power of 3 and get 27.
\frac{p^{3}}{27x^{3}}=\frac{p^{3}}{3^{3}x^{3}}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Expand \left(3x\right)^{3}.
\frac{p^{3}}{27x^{3}}=\frac{p^{3}}{27x^{3}}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Calculate 3 to the power of 3 and get 27.
\frac{p^{3}}{27x^{3}}-\frac{p^{3}}{27x^{3}}=0\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Subtract \frac{p^{3}}{27x^{3}} from both sides.
0=0\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Subtract \frac{p^{3}}{27x^{3}} from \frac{p^{3}}{27x^{3}} to get 0.
\text{true}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Compare 0 and 0.
\text{true}\text{ and }\frac{p^{3}}{3^{3}x^{3}}=\frac{p^{3}}{27x^{3}}
Expand \left(3x\right)^{3}.
\text{true}\text{ and }\frac{p^{3}}{27x^{3}}=\frac{p^{3}}{27x^{3}}
Calculate 3 to the power of 3 and get 27.
\text{true}\text{ and }\frac{p^{3}}{27x^{3}}-\frac{p^{3}}{27x^{3}}=0
Subtract \frac{p^{3}}{27x^{3}} from both sides.
\text{true}\text{ and }0=0
Subtract \frac{p^{3}}{27x^{3}} from \frac{p^{3}}{27x^{3}} to get 0.
\text{true}\text{ and }\text{true}
Compare 0 and 0.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.