Evaluate (complex solution)
true
Solve for x
x\neq 0
Solve for p
p\in \mathrm{R}
x\neq 0
Graph
Share
Copied to clipboard
\left(\frac{p}{3x}\right)^{3}=\left(\frac{p}{3x}\right)^{3}\text{ and }\left(\frac{p}{3x}\right)^{3}=\frac{p^{3}}{27x^{3}}
Cancel out 2x in both numerator and denominator.
\frac{p^{3}}{\left(3x\right)^{3}}=\left(\frac{p}{3x}\right)^{3}\text{ and }\left(\frac{p}{3x}\right)^{3}=\frac{p^{3}}{27x^{3}}
To raise \frac{p}{3x} to a power, raise both numerator and denominator to the power and then divide.
\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{\left(3x\right)^{3}}\text{ and }\left(\frac{p}{3x}\right)^{3}=\frac{p^{3}}{27x^{3}}
To raise \frac{p}{3x} to a power, raise both numerator and denominator to the power and then divide.
\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{\left(3x\right)^{3}}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
To raise \frac{p}{3x} to a power, raise both numerator and denominator to the power and then divide.
\frac{p^{3}}{3^{3}x^{3}}=\frac{p^{3}}{\left(3x\right)^{3}}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Expand \left(3x\right)^{3}.
\frac{p^{3}}{27x^{3}}=\frac{p^{3}}{\left(3x\right)^{3}}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Calculate 3 to the power of 3 and get 27.
\frac{p^{3}}{27x^{3}}=\frac{p^{3}}{3^{3}x^{3}}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Expand \left(3x\right)^{3}.
\frac{p^{3}}{27x^{3}}=\frac{p^{3}}{27x^{3}}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Calculate 3 to the power of 3 and get 27.
\frac{p^{3}}{27x^{3}}-\frac{p^{3}}{27x^{3}}=0\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Subtract \frac{p^{3}}{27x^{3}} from both sides.
0=0\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Subtract \frac{p^{3}}{27x^{3}} from \frac{p^{3}}{27x^{3}} to get 0.
\text{true}\text{ and }\frac{p^{3}}{\left(3x\right)^{3}}=\frac{p^{3}}{27x^{3}}
Compare 0 and 0.
\text{true}\text{ and }\frac{p^{3}}{3^{3}x^{3}}=\frac{p^{3}}{27x^{3}}
Expand \left(3x\right)^{3}.
\text{true}\text{ and }\frac{p^{3}}{27x^{3}}=\frac{p^{3}}{27x^{3}}
Calculate 3 to the power of 3 and get 27.
\text{true}\text{ and }\frac{p^{3}}{27x^{3}}-\frac{p^{3}}{27x^{3}}=0
Subtract \frac{p^{3}}{27x^{3}} from both sides.
\text{true}\text{ and }0=0
Subtract \frac{p^{3}}{27x^{3}} from \frac{p^{3}}{27x^{3}} to get 0.
\text{true}\text{ and }\text{true}
Compare 0 and 0.
\text{true}
The conjunction of \text{true} and \text{true} is \text{true}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}