Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{2x}{\left(x+1\right)^{2}}-\frac{x}{x-1}}{\frac{x}{x^{2}-1}-2x}
Factor x^{2}+2x+1.
\frac{\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)^{2} and x-1 is \left(x-1\right)\left(x+1\right)^{2}. Multiply \frac{2x}{\left(x+1\right)^{2}} times \frac{x-1}{x-1}. Multiply \frac{x}{x-1} times \frac{\left(x+1\right)^{2}}{\left(x+1\right)^{2}}.
\frac{\frac{2x\left(x-1\right)-x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Since \frac{2x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}} and \frac{x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-2x-x^{3}-2x^{2}-x}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Do the multiplications in 2x\left(x-1\right)-x\left(x+1\right)^{2}.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Combine like terms in 2x^{2}-2x-x^{3}-2x^{2}-x.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{\left(x-1\right)\left(x+1\right)}-2x}
Factor x^{2}-1.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Since \frac{x}{\left(x-1\right)\left(x+1\right)} and \frac{-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x-2x^{3}-2x^{2}+2x^{2}+2x}{\left(x-1\right)\left(x+1\right)}}
Do the multiplications in x-2x\left(x-1\right)\left(x+1\right).
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)}}
Combine like terms in x-2x^{3}-2x^{2}+2x^{2}+2x.
\frac{\left(-3x-x^{3}\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}\left(3x-2x^{3}\right)}
Divide \frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}} by \frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)} by multiplying \frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}} by the reciprocal of \frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-x^{3}-3x}{\left(x+1\right)\left(-2x^{3}+3x\right)}
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{x\left(-x^{2}-3\right)}{x\left(x+1\right)\left(-2x^{2}+3\right)}
Factor the expressions that are not already factored.
\frac{-x^{2}-3}{\left(x+1\right)\left(-2x^{2}+3\right)}
Cancel out x in both numerator and denominator.
\frac{-x^{2}-3}{-2x^{3}-2x^{2}+3x+3}
Expand the expression.
\frac{\frac{2x}{\left(x+1\right)^{2}}-\frac{x}{x-1}}{\frac{x}{x^{2}-1}-2x}
Factor x^{2}+2x+1.
\frac{\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)^{2} and x-1 is \left(x-1\right)\left(x+1\right)^{2}. Multiply \frac{2x}{\left(x+1\right)^{2}} times \frac{x-1}{x-1}. Multiply \frac{x}{x-1} times \frac{\left(x+1\right)^{2}}{\left(x+1\right)^{2}}.
\frac{\frac{2x\left(x-1\right)-x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Since \frac{2x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}} and \frac{x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-2x-x^{3}-2x^{2}-x}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Do the multiplications in 2x\left(x-1\right)-x\left(x+1\right)^{2}.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Combine like terms in 2x^{2}-2x-x^{3}-2x^{2}-x.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{\left(x-1\right)\left(x+1\right)}-2x}
Factor x^{2}-1.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Since \frac{x}{\left(x-1\right)\left(x+1\right)} and \frac{-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x-2x^{3}-2x^{2}+2x^{2}+2x}{\left(x-1\right)\left(x+1\right)}}
Do the multiplications in x-2x\left(x-1\right)\left(x+1\right).
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)}}
Combine like terms in x-2x^{3}-2x^{2}+2x^{2}+2x.
\frac{\left(-3x-x^{3}\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}\left(3x-2x^{3}\right)}
Divide \frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}} by \frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)} by multiplying \frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}} by the reciprocal of \frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-x^{3}-3x}{\left(x+1\right)\left(-2x^{3}+3x\right)}
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{x\left(-x^{2}-3\right)}{x\left(x+1\right)\left(-2x^{2}+3\right)}
Factor the expressions that are not already factored.
\frac{-x^{2}-3}{\left(x+1\right)\left(-2x^{2}+3\right)}
Cancel out x in both numerator and denominator.
\frac{-x^{2}-3}{-2x^{3}-2x^{2}+3x+3}
Expand the expression.