Evaluate
-\frac{x^{2}+3}{\left(x+1\right)\left(3-2x^{2}\right)}
Expand
-\frac{x^{2}+3}{\left(x+1\right)\left(3-2x^{2}\right)}
Graph
Share
Copied to clipboard
\frac{\frac{2x}{\left(x+1\right)^{2}}-\frac{x}{x-1}}{\frac{x}{x^{2}-1}-2x}
Factor x^{2}+2x+1.
\frac{\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)^{2} and x-1 is \left(x-1\right)\left(x+1\right)^{2}. Multiply \frac{2x}{\left(x+1\right)^{2}} times \frac{x-1}{x-1}. Multiply \frac{x}{x-1} times \frac{\left(x+1\right)^{2}}{\left(x+1\right)^{2}}.
\frac{\frac{2x\left(x-1\right)-x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Since \frac{2x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}} and \frac{x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-2x-x^{3}-2x^{2}-x}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Do the multiplications in 2x\left(x-1\right)-x\left(x+1\right)^{2}.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Combine like terms in 2x^{2}-2x-x^{3}-2x^{2}-x.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{\left(x-1\right)\left(x+1\right)}-2x}
Factor x^{2}-1.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Since \frac{x}{\left(x-1\right)\left(x+1\right)} and \frac{-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x-2x^{3}-2x^{2}+2x^{2}+2x}{\left(x-1\right)\left(x+1\right)}}
Do the multiplications in x-2x\left(x-1\right)\left(x+1\right).
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)}}
Combine like terms in x-2x^{3}-2x^{2}+2x^{2}+2x.
\frac{\left(-3x-x^{3}\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}\left(3x-2x^{3}\right)}
Divide \frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}} by \frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)} by multiplying \frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}} by the reciprocal of \frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-x^{3}-3x}{\left(x+1\right)\left(-2x^{3}+3x\right)}
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{x\left(-x^{2}-3\right)}{x\left(x+1\right)\left(-2x^{2}+3\right)}
Factor the expressions that are not already factored.
\frac{-x^{2}-3}{\left(x+1\right)\left(-2x^{2}+3\right)}
Cancel out x in both numerator and denominator.
\frac{-x^{2}-3}{-2x^{3}-2x^{2}+3x+3}
Expand the expression.
\frac{\frac{2x}{\left(x+1\right)^{2}}-\frac{x}{x-1}}{\frac{x}{x^{2}-1}-2x}
Factor x^{2}+2x+1.
\frac{\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}}-\frac{x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)^{2} and x-1 is \left(x-1\right)\left(x+1\right)^{2}. Multiply \frac{2x}{\left(x+1\right)^{2}} times \frac{x-1}{x-1}. Multiply \frac{x}{x-1} times \frac{\left(x+1\right)^{2}}{\left(x+1\right)^{2}}.
\frac{\frac{2x\left(x-1\right)-x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Since \frac{2x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)^{2}} and \frac{x\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x^{2}-2x-x^{3}-2x^{2}-x}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Do the multiplications in 2x\left(x-1\right)-x\left(x+1\right)^{2}.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{x^{2}-1}-2x}
Combine like terms in 2x^{2}-2x-x^{3}-2x^{2}-x.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{\left(x-1\right)\left(x+1\right)}-2x}
Factor x^{2}-1.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x}{\left(x-1\right)\left(x+1\right)}+\frac{-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Multiply -2x times \frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}}
Since \frac{x}{\left(x-1\right)\left(x+1\right)} and \frac{-2x\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{x-2x^{3}-2x^{2}+2x^{2}+2x}{\left(x-1\right)\left(x+1\right)}}
Do the multiplications in x-2x\left(x-1\right)\left(x+1\right).
\frac{\frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}}}{\frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)}}
Combine like terms in x-2x^{3}-2x^{2}+2x^{2}+2x.
\frac{\left(-3x-x^{3}\right)\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}\left(3x-2x^{3}\right)}
Divide \frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}} by \frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)} by multiplying \frac{-3x-x^{3}}{\left(x-1\right)\left(x+1\right)^{2}} by the reciprocal of \frac{3x-2x^{3}}{\left(x-1\right)\left(x+1\right)}.
\frac{-x^{3}-3x}{\left(x+1\right)\left(-2x^{3}+3x\right)}
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{x\left(-x^{2}-3\right)}{x\left(x+1\right)\left(-2x^{2}+3\right)}
Factor the expressions that are not already factored.
\frac{-x^{2}-3}{\left(x+1\right)\left(-2x^{2}+3\right)}
Cancel out x in both numerator and denominator.
\frac{-x^{2}-3}{-2x^{3}-2x^{2}+3x+3}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}