Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2a^{2}-2\right)\left(a+b\right)}{\left(a^{2}+ab\right)\left(1-a\right)}\times \frac{1}{a^{3}+1}
Divide \frac{2a^{2}-2}{a^{2}+ab} by \frac{1-a}{a+b} by multiplying \frac{2a^{2}-2}{a^{2}+ab} by the reciprocal of \frac{1-a}{a+b}.
\frac{2\left(a-1\right)\left(a+1\right)\left(a+b\right)}{a\left(-a+1\right)\left(a+b\right)}\times \frac{1}{a^{3}+1}
Factor the expressions that are not already factored in \frac{\left(2a^{2}-2\right)\left(a+b\right)}{\left(a^{2}+ab\right)\left(1-a\right)}.
\frac{-2\left(a+1\right)\left(-a+1\right)\left(a+b\right)}{a\left(-a+1\right)\left(a+b\right)}\times \frac{1}{a^{3}+1}
Extract the negative sign in -1+a.
\frac{-2\left(a+1\right)}{a}\times \frac{1}{a^{3}+1}
Cancel out \left(-a+1\right)\left(a+b\right) in both numerator and denominator.
\frac{-2\left(a+1\right)}{a\left(a^{3}+1\right)}
Multiply \frac{-2\left(a+1\right)}{a} times \frac{1}{a^{3}+1} by multiplying numerator times numerator and denominator times denominator.
\frac{-2\left(a+1\right)}{a\left(a+1\right)\left(a^{2}-a+1\right)}
Factor the expressions that are not already factored.
\frac{-2}{a\left(a^{2}-a+1\right)}
Cancel out a+1 in both numerator and denominator.
\frac{-2}{a^{3}-a^{2}+a}
Expand the expression.
\frac{\left(2a^{2}-2\right)\left(a+b\right)}{\left(a^{2}+ab\right)\left(1-a\right)}\times \frac{1}{a^{3}+1}
Divide \frac{2a^{2}-2}{a^{2}+ab} by \frac{1-a}{a+b} by multiplying \frac{2a^{2}-2}{a^{2}+ab} by the reciprocal of \frac{1-a}{a+b}.
\frac{2\left(a-1\right)\left(a+1\right)\left(a+b\right)}{a\left(-a+1\right)\left(a+b\right)}\times \frac{1}{a^{3}+1}
Factor the expressions that are not already factored in \frac{\left(2a^{2}-2\right)\left(a+b\right)}{\left(a^{2}+ab\right)\left(1-a\right)}.
\frac{-2\left(a+1\right)\left(-a+1\right)\left(a+b\right)}{a\left(-a+1\right)\left(a+b\right)}\times \frac{1}{a^{3}+1}
Extract the negative sign in -1+a.
\frac{-2\left(a+1\right)}{a}\times \frac{1}{a^{3}+1}
Cancel out \left(-a+1\right)\left(a+b\right) in both numerator and denominator.
\frac{-2\left(a+1\right)}{a\left(a^{3}+1\right)}
Multiply \frac{-2\left(a+1\right)}{a} times \frac{1}{a^{3}+1} by multiplying numerator times numerator and denominator times denominator.
\frac{-2\left(a+1\right)}{a\left(a+1\right)\left(a^{2}-a+1\right)}
Factor the expressions that are not already factored.
\frac{-2}{a\left(a^{2}-a+1\right)}
Cancel out a+1 in both numerator and denominator.
\frac{-2}{a^{3}-a^{2}+a}
Expand the expression.