Evaluate
-\frac{2}{a\left(a^{2}-a+1\right)}
Expand
-\frac{2}{a\left(a^{2}-a+1\right)}
Share
Copied to clipboard
\frac{\left(2a^{2}-2\right)\left(a+b\right)}{\left(a^{2}+ab\right)\left(1-a\right)}\times \frac{1}{a^{3}+1}
Divide \frac{2a^{2}-2}{a^{2}+ab} by \frac{1-a}{a+b} by multiplying \frac{2a^{2}-2}{a^{2}+ab} by the reciprocal of \frac{1-a}{a+b}.
\frac{2\left(a-1\right)\left(a+1\right)\left(a+b\right)}{a\left(-a+1\right)\left(a+b\right)}\times \frac{1}{a^{3}+1}
Factor the expressions that are not already factored in \frac{\left(2a^{2}-2\right)\left(a+b\right)}{\left(a^{2}+ab\right)\left(1-a\right)}.
\frac{-2\left(a+1\right)\left(-a+1\right)\left(a+b\right)}{a\left(-a+1\right)\left(a+b\right)}\times \frac{1}{a^{3}+1}
Extract the negative sign in -1+a.
\frac{-2\left(a+1\right)}{a}\times \frac{1}{a^{3}+1}
Cancel out \left(-a+1\right)\left(a+b\right) in both numerator and denominator.
\frac{-2\left(a+1\right)}{a\left(a^{3}+1\right)}
Multiply \frac{-2\left(a+1\right)}{a} times \frac{1}{a^{3}+1} by multiplying numerator times numerator and denominator times denominator.
\frac{-2\left(a+1\right)}{a\left(a+1\right)\left(a^{2}-a+1\right)}
Factor the expressions that are not already factored.
\frac{-2}{a\left(a^{2}-a+1\right)}
Cancel out a+1 in both numerator and denominator.
\frac{-2}{a^{3}-a^{2}+a}
Expand the expression.
\frac{\left(2a^{2}-2\right)\left(a+b\right)}{\left(a^{2}+ab\right)\left(1-a\right)}\times \frac{1}{a^{3}+1}
Divide \frac{2a^{2}-2}{a^{2}+ab} by \frac{1-a}{a+b} by multiplying \frac{2a^{2}-2}{a^{2}+ab} by the reciprocal of \frac{1-a}{a+b}.
\frac{2\left(a-1\right)\left(a+1\right)\left(a+b\right)}{a\left(-a+1\right)\left(a+b\right)}\times \frac{1}{a^{3}+1}
Factor the expressions that are not already factored in \frac{\left(2a^{2}-2\right)\left(a+b\right)}{\left(a^{2}+ab\right)\left(1-a\right)}.
\frac{-2\left(a+1\right)\left(-a+1\right)\left(a+b\right)}{a\left(-a+1\right)\left(a+b\right)}\times \frac{1}{a^{3}+1}
Extract the negative sign in -1+a.
\frac{-2\left(a+1\right)}{a}\times \frac{1}{a^{3}+1}
Cancel out \left(-a+1\right)\left(a+b\right) in both numerator and denominator.
\frac{-2\left(a+1\right)}{a\left(a^{3}+1\right)}
Multiply \frac{-2\left(a+1\right)}{a} times \frac{1}{a^{3}+1} by multiplying numerator times numerator and denominator times denominator.
\frac{-2\left(a+1\right)}{a\left(a+1\right)\left(a^{2}-a+1\right)}
Factor the expressions that are not already factored.
\frac{-2}{a\left(a^{2}-a+1\right)}
Cancel out a+1 in both numerator and denominator.
\frac{-2}{a^{3}-a^{2}+a}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}