Evaluate
\frac{\left(3a-2\right)\left(14a^{2}-9\right)}{315}
Expand
\frac{2a^{3}}{15}-\frac{4a^{2}}{45}-\frac{3a}{35}+\frac{2}{35}
Share
Copied to clipboard
\left(\frac{7\times 2a^{2}}{63}-\frac{9}{63}\right)\left(\frac{3a}{5}-\frac{2}{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 7 is 63. Multiply \frac{2a^{2}}{9} times \frac{7}{7}. Multiply \frac{1}{7} times \frac{9}{9}.
\frac{7\times 2a^{2}-9}{63}\left(\frac{3a}{5}-\frac{2}{5}\right)
Since \frac{7\times 2a^{2}}{63} and \frac{9}{63} have the same denominator, subtract them by subtracting their numerators.
\frac{14a^{2}-9}{63}\left(\frac{3a}{5}-\frac{2}{5}\right)
Do the multiplications in 7\times 2a^{2}-9.
\frac{14a^{2}-9}{63}\times \frac{3a-2}{5}
Since \frac{3a}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(14a^{2}-9\right)\left(3a-2\right)}{63\times 5}
Multiply \frac{14a^{2}-9}{63} times \frac{3a-2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(14a^{2}-9\right)\left(3a-2\right)}{315}
Multiply 63 and 5 to get 315.
\frac{42a^{3}-28a^{2}-27a+18}{315}
Use the distributive property to multiply 14a^{2}-9 by 3a-2.
\left(\frac{7\times 2a^{2}}{63}-\frac{9}{63}\right)\left(\frac{3a}{5}-\frac{2}{5}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 7 is 63. Multiply \frac{2a^{2}}{9} times \frac{7}{7}. Multiply \frac{1}{7} times \frac{9}{9}.
\frac{7\times 2a^{2}-9}{63}\left(\frac{3a}{5}-\frac{2}{5}\right)
Since \frac{7\times 2a^{2}}{63} and \frac{9}{63} have the same denominator, subtract them by subtracting their numerators.
\frac{14a^{2}-9}{63}\left(\frac{3a}{5}-\frac{2}{5}\right)
Do the multiplications in 7\times 2a^{2}-9.
\frac{14a^{2}-9}{63}\times \frac{3a-2}{5}
Since \frac{3a}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(14a^{2}-9\right)\left(3a-2\right)}{63\times 5}
Multiply \frac{14a^{2}-9}{63} times \frac{3a-2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(14a^{2}-9\right)\left(3a-2\right)}{315}
Multiply 63 and 5 to get 315.
\frac{42a^{3}-28a^{2}-27a+18}{315}
Use the distributive property to multiply 14a^{2}-9 by 3a-2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}