Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \left(\frac{3}{a}\right)^{-3}
To raise \frac{2a^{2}}{3b} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \frac{3^{-3}}{a^{-3}}
To raise \frac{3}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Multiply \frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}} times \frac{3^{-3}}{a^{-3}} by multiplying numerator times numerator and denominator times denominator.
\frac{2^{-2}\left(a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Expand \left(2a^{2}\right)^{-2}.
\frac{2^{-2}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{4}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\frac{1}{4}a^{-4}\times \frac{1}{27}}{\left(3b\right)^{-2}a^{-3}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{\frac{1}{108}a^{-4}}{\left(3b\right)^{-2}a^{-3}}
Multiply \frac{1}{4} and \frac{1}{27} to get \frac{1}{108}.
\frac{\frac{1}{108}a^{-4}}{3^{-2}b^{-2}a^{-3}}
Expand \left(3b\right)^{-2}.
\frac{\frac{1}{108}a^{-4}}{\frac{1}{9}b^{-2}a^{-3}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{108\times \frac{1}{9}b^{-2}a^{1}}
Express \frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}} as a single fraction.
\frac{1}{12b^{-2}a^{1}}
Multiply 108 and \frac{1}{9} to get 12.
\frac{1}{12b^{-2}a}
Calculate a to the power of 1 and get a.
\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \left(\frac{3}{a}\right)^{-3}
To raise \frac{2a^{2}}{3b} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}}\times \frac{3^{-3}}{a^{-3}}
To raise \frac{3}{a} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Multiply \frac{\left(2a^{2}\right)^{-2}}{\left(3b\right)^{-2}} times \frac{3^{-3}}{a^{-3}} by multiplying numerator times numerator and denominator times denominator.
\frac{2^{-2}\left(a^{2}\right)^{-2}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Expand \left(2a^{2}\right)^{-2}.
\frac{2^{-2}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
To raise a power to another power, multiply the exponents. Multiply 2 and -2 to get -4.
\frac{\frac{1}{4}a^{-4}\times 3^{-3}}{\left(3b\right)^{-2}a^{-3}}
Calculate 2 to the power of -2 and get \frac{1}{4}.
\frac{\frac{1}{4}a^{-4}\times \frac{1}{27}}{\left(3b\right)^{-2}a^{-3}}
Calculate 3 to the power of -3 and get \frac{1}{27}.
\frac{\frac{1}{108}a^{-4}}{\left(3b\right)^{-2}a^{-3}}
Multiply \frac{1}{4} and \frac{1}{27} to get \frac{1}{108}.
\frac{\frac{1}{108}a^{-4}}{3^{-2}b^{-2}a^{-3}}
Expand \left(3b\right)^{-2}.
\frac{\frac{1}{108}a^{-4}}{\frac{1}{9}b^{-2}a^{-3}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}}
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
\frac{1}{108\times \frac{1}{9}b^{-2}a^{1}}
Express \frac{\frac{1}{108}}{\frac{1}{9}b^{-2}a^{1}} as a single fraction.
\frac{1}{12b^{-2}a^{1}}
Multiply 108 and \frac{1}{9} to get 12.
\frac{1}{12b^{-2}a}
Calculate a to the power of 1 and get a.