Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{4}{x^{2}-9}}{\frac{2}{3x-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and x+3 is \left(x-3\right)\left(x+3\right). Multiply \frac{2}{x-3} times \frac{x+3}{x+3}. Multiply \frac{2}{x+3} times \frac{x-3}{x-3}.
\frac{\frac{2\left(x+3\right)-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{4}{x^{2}-9}}{\frac{2}{3x-9}}
Since \frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x+6-2x+6}{\left(x-3\right)\left(x+3\right)}+\frac{4}{x^{2}-9}}{\frac{2}{3x-9}}
Do the multiplications in 2\left(x+3\right)-2\left(x-3\right).
\frac{\frac{12}{\left(x-3\right)\left(x+3\right)}+\frac{4}{x^{2}-9}}{\frac{2}{3x-9}}
Combine like terms in 2x+6-2x+6.
\frac{\frac{12}{\left(x-3\right)\left(x+3\right)}+\frac{4}{\left(x-3\right)\left(x+3\right)}}{\frac{2}{3x-9}}
Factor x^{2}-9.
\frac{\frac{16}{\left(x-3\right)\left(x+3\right)}}{\frac{2}{3x-9}}
Since \frac{12}{\left(x-3\right)\left(x+3\right)} and \frac{4}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators. Add 12 and 4 to get 16.
\frac{16\left(3x-9\right)}{\left(x-3\right)\left(x+3\right)\times 2}
Divide \frac{16}{\left(x-3\right)\left(x+3\right)} by \frac{2}{3x-9} by multiplying \frac{16}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{2}{3x-9}.
\frac{8\left(3x-9\right)}{\left(x-3\right)\left(x+3\right)}
Cancel out 2 in both numerator and denominator.
\frac{3\times 8\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored.
\frac{3\times 8}{x+3}
Cancel out x-3 in both numerator and denominator.
\frac{24}{x+3}
Expand the expression.
\frac{\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{4}{x^{2}-9}}{\frac{2}{3x-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and x+3 is \left(x-3\right)\left(x+3\right). Multiply \frac{2}{x-3} times \frac{x+3}{x+3}. Multiply \frac{2}{x+3} times \frac{x-3}{x-3}.
\frac{\frac{2\left(x+3\right)-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{4}{x^{2}-9}}{\frac{2}{3x-9}}
Since \frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x+6-2x+6}{\left(x-3\right)\left(x+3\right)}+\frac{4}{x^{2}-9}}{\frac{2}{3x-9}}
Do the multiplications in 2\left(x+3\right)-2\left(x-3\right).
\frac{\frac{12}{\left(x-3\right)\left(x+3\right)}+\frac{4}{x^{2}-9}}{\frac{2}{3x-9}}
Combine like terms in 2x+6-2x+6.
\frac{\frac{12}{\left(x-3\right)\left(x+3\right)}+\frac{4}{\left(x-3\right)\left(x+3\right)}}{\frac{2}{3x-9}}
Factor x^{2}-9.
\frac{\frac{16}{\left(x-3\right)\left(x+3\right)}}{\frac{2}{3x-9}}
Since \frac{12}{\left(x-3\right)\left(x+3\right)} and \frac{4}{\left(x-3\right)\left(x+3\right)} have the same denominator, add them by adding their numerators. Add 12 and 4 to get 16.
\frac{16\left(3x-9\right)}{\left(x-3\right)\left(x+3\right)\times 2}
Divide \frac{16}{\left(x-3\right)\left(x+3\right)} by \frac{2}{3x-9} by multiplying \frac{16}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{2}{3x-9}.
\frac{8\left(3x-9\right)}{\left(x-3\right)\left(x+3\right)}
Cancel out 2 in both numerator and denominator.
\frac{3\times 8\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored.
\frac{3\times 8}{x+3}
Cancel out x-3 in both numerator and denominator.
\frac{24}{x+3}
Expand the expression.