Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x+3}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{2}{x+3} times \frac{x-3}{x-3}. Multiply \frac{1}{x-3} times \frac{x+3}{x+3}.
\frac{\frac{2\left(x-3\right)-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Since \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x+3}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x-6-x-3}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Do the multiplications in 2\left(x-3\right)-\left(x+3\right).
\frac{\frac{x-9}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Combine like terms in 2x-6-x-3.
\frac{\left(x-9\right)\left(x^{2}-9\right)}{\left(x-3\right)\left(x+3\right)x}
Divide \frac{x-9}{\left(x-3\right)\left(x+3\right)} by \frac{x}{x^{2}-9} by multiplying \frac{x-9}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{x}{x^{2}-9}.
\frac{\left(x-9\right)\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored.
\frac{x-9}{x}
Cancel out \left(x-3\right)\left(x+3\right) in both numerator and denominator.
\frac{\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{x+3}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x-3 is \left(x-3\right)\left(x+3\right). Multiply \frac{2}{x+3} times \frac{x-3}{x-3}. Multiply \frac{1}{x-3} times \frac{x+3}{x+3}.
\frac{\frac{2\left(x-3\right)-\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Since \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)} and \frac{x+3}{\left(x-3\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x-6-x-3}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Do the multiplications in 2\left(x-3\right)-\left(x+3\right).
\frac{\frac{x-9}{\left(x-3\right)\left(x+3\right)}}{\frac{x}{x^{2}-9}}
Combine like terms in 2x-6-x-3.
\frac{\left(x-9\right)\left(x^{2}-9\right)}{\left(x-3\right)\left(x+3\right)x}
Divide \frac{x-9}{\left(x-3\right)\left(x+3\right)} by \frac{x}{x^{2}-9} by multiplying \frac{x-9}{\left(x-3\right)\left(x+3\right)} by the reciprocal of \frac{x}{x^{2}-9}.
\frac{\left(x-9\right)\left(x-3\right)\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}
Factor the expressions that are not already factored.
\frac{x-9}{x}
Cancel out \left(x-3\right)\left(x+3\right) in both numerator and denominator.