Evaluate
\frac{c}{c-2}
Expand
\frac{c}{c-2}
Share
Copied to clipboard
\left(\frac{2}{c-2}+\frac{3c-21}{\left(c-2\right)\left(c+3\right)}+\frac{2c}{c+3}\right)\times \frac{c}{2c-5}
Factor c^{2}+c-6.
\left(\frac{2\left(c+3\right)}{\left(c-2\right)\left(c+3\right)}+\frac{3c-21}{\left(c-2\right)\left(c+3\right)}+\frac{2c}{c+3}\right)\times \frac{c}{2c-5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of c-2 and \left(c-2\right)\left(c+3\right) is \left(c-2\right)\left(c+3\right). Multiply \frac{2}{c-2} times \frac{c+3}{c+3}.
\left(\frac{2\left(c+3\right)+3c-21}{\left(c-2\right)\left(c+3\right)}+\frac{2c}{c+3}\right)\times \frac{c}{2c-5}
Since \frac{2\left(c+3\right)}{\left(c-2\right)\left(c+3\right)} and \frac{3c-21}{\left(c-2\right)\left(c+3\right)} have the same denominator, add them by adding their numerators.
\left(\frac{2c+6+3c-21}{\left(c-2\right)\left(c+3\right)}+\frac{2c}{c+3}\right)\times \frac{c}{2c-5}
Do the multiplications in 2\left(c+3\right)+3c-21.
\left(\frac{5c-15}{\left(c-2\right)\left(c+3\right)}+\frac{2c}{c+3}\right)\times \frac{c}{2c-5}
Combine like terms in 2c+6+3c-21.
\left(\frac{5c-15}{\left(c-2\right)\left(c+3\right)}+\frac{2c\left(c-2\right)}{\left(c-2\right)\left(c+3\right)}\right)\times \frac{c}{2c-5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c+3\right) and c+3 is \left(c-2\right)\left(c+3\right). Multiply \frac{2c}{c+3} times \frac{c-2}{c-2}.
\frac{5c-15+2c\left(c-2\right)}{\left(c-2\right)\left(c+3\right)}\times \frac{c}{2c-5}
Since \frac{5c-15}{\left(c-2\right)\left(c+3\right)} and \frac{2c\left(c-2\right)}{\left(c-2\right)\left(c+3\right)} have the same denominator, add them by adding their numerators.
\frac{5c-15+2c^{2}-4c}{\left(c-2\right)\left(c+3\right)}\times \frac{c}{2c-5}
Do the multiplications in 5c-15+2c\left(c-2\right).
\frac{c-15+2c^{2}}{\left(c-2\right)\left(c+3\right)}\times \frac{c}{2c-5}
Combine like terms in 5c-15+2c^{2}-4c.
\frac{\left(2c-5\right)\left(c+3\right)}{\left(c-2\right)\left(c+3\right)}\times \frac{c}{2c-5}
Factor the expressions that are not already factored in \frac{c-15+2c^{2}}{\left(c-2\right)\left(c+3\right)}.
\frac{2c-5}{c-2}\times \frac{c}{2c-5}
Cancel out c+3 in both numerator and denominator.
\frac{\left(2c-5\right)c}{\left(c-2\right)\left(2c-5\right)}
Multiply \frac{2c-5}{c-2} times \frac{c}{2c-5} by multiplying numerator times numerator and denominator times denominator.
\frac{c}{c-2}
Cancel out 2c-5 in both numerator and denominator.
\left(\frac{2}{c-2}+\frac{3c-21}{\left(c-2\right)\left(c+3\right)}+\frac{2c}{c+3}\right)\times \frac{c}{2c-5}
Factor c^{2}+c-6.
\left(\frac{2\left(c+3\right)}{\left(c-2\right)\left(c+3\right)}+\frac{3c-21}{\left(c-2\right)\left(c+3\right)}+\frac{2c}{c+3}\right)\times \frac{c}{2c-5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of c-2 and \left(c-2\right)\left(c+3\right) is \left(c-2\right)\left(c+3\right). Multiply \frac{2}{c-2} times \frac{c+3}{c+3}.
\left(\frac{2\left(c+3\right)+3c-21}{\left(c-2\right)\left(c+3\right)}+\frac{2c}{c+3}\right)\times \frac{c}{2c-5}
Since \frac{2\left(c+3\right)}{\left(c-2\right)\left(c+3\right)} and \frac{3c-21}{\left(c-2\right)\left(c+3\right)} have the same denominator, add them by adding their numerators.
\left(\frac{2c+6+3c-21}{\left(c-2\right)\left(c+3\right)}+\frac{2c}{c+3}\right)\times \frac{c}{2c-5}
Do the multiplications in 2\left(c+3\right)+3c-21.
\left(\frac{5c-15}{\left(c-2\right)\left(c+3\right)}+\frac{2c}{c+3}\right)\times \frac{c}{2c-5}
Combine like terms in 2c+6+3c-21.
\left(\frac{5c-15}{\left(c-2\right)\left(c+3\right)}+\frac{2c\left(c-2\right)}{\left(c-2\right)\left(c+3\right)}\right)\times \frac{c}{2c-5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(c-2\right)\left(c+3\right) and c+3 is \left(c-2\right)\left(c+3\right). Multiply \frac{2c}{c+3} times \frac{c-2}{c-2}.
\frac{5c-15+2c\left(c-2\right)}{\left(c-2\right)\left(c+3\right)}\times \frac{c}{2c-5}
Since \frac{5c-15}{\left(c-2\right)\left(c+3\right)} and \frac{2c\left(c-2\right)}{\left(c-2\right)\left(c+3\right)} have the same denominator, add them by adding their numerators.
\frac{5c-15+2c^{2}-4c}{\left(c-2\right)\left(c+3\right)}\times \frac{c}{2c-5}
Do the multiplications in 5c-15+2c\left(c-2\right).
\frac{c-15+2c^{2}}{\left(c-2\right)\left(c+3\right)}\times \frac{c}{2c-5}
Combine like terms in 5c-15+2c^{2}-4c.
\frac{\left(2c-5\right)\left(c+3\right)}{\left(c-2\right)\left(c+3\right)}\times \frac{c}{2c-5}
Factor the expressions that are not already factored in \frac{c-15+2c^{2}}{\left(c-2\right)\left(c+3\right)}.
\frac{2c-5}{c-2}\times \frac{c}{2c-5}
Cancel out c+3 in both numerator and denominator.
\frac{\left(2c-5\right)c}{\left(c-2\right)\left(2c-5\right)}
Multiply \frac{2c-5}{c-2} times \frac{c}{2c-5} by multiplying numerator times numerator and denominator times denominator.
\frac{c}{c-2}
Cancel out 2c-5 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}