Evaluate
a-2
Expand
a-2
Share
Copied to clipboard
\frac{\frac{2\left(a+3\right)}{\left(a+1\right)\left(a+3\right)}-\frac{3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and a+3 is \left(a+1\right)\left(a+3\right). Multiply \frac{2}{a+1} times \frac{a+3}{a+3}. Multiply \frac{3}{a+3} times \frac{a+1}{a+1}.
\frac{\frac{2\left(a+3\right)-3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Since \frac{2\left(a+3\right)}{\left(a+1\right)\left(a+3\right)} and \frac{3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2a+6-3a-3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Do the multiplications in 2\left(a+3\right)-3\left(a+1\right).
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Combine like terms in 2a+6-3a-3.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{\left(a-2\right)\left(a+1\right)}-\frac{3}{\left(a-2\right)\left(a+3\right)}}
Factor a^{2}-a-2. Factor a^{2}+a-6.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2\left(a+3\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}-\frac{3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+1\right) and \left(a-2\right)\left(a+3\right) is \left(a-2\right)\left(a+1\right)\left(a+3\right). Multiply \frac{2}{\left(a-2\right)\left(a+1\right)} times \frac{a+3}{a+3}. Multiply \frac{3}{\left(a-2\right)\left(a+3\right)} times \frac{a+1}{a+1}.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2\left(a+3\right)-3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Since \frac{2\left(a+3\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} and \frac{3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2a+6-3a-3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Do the multiplications in 2\left(a+3\right)-3\left(a+1\right).
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Combine like terms in 2a+6-3a-3.
\frac{\left(-a+3\right)\left(a-2\right)\left(a+1\right)\left(a+3\right)}{\left(a+1\right)\left(a+3\right)\left(-a+3\right)}
Divide \frac{-a+3}{\left(a+1\right)\left(a+3\right)} by \frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} by multiplying \frac{-a+3}{\left(a+1\right)\left(a+3\right)} by the reciprocal of \frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}.
a-2
Cancel out \left(a+1\right)\left(a+3\right)\left(-a+3\right) in both numerator and denominator.
\frac{\frac{2\left(a+3\right)}{\left(a+1\right)\left(a+3\right)}-\frac{3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and a+3 is \left(a+1\right)\left(a+3\right). Multiply \frac{2}{a+1} times \frac{a+3}{a+3}. Multiply \frac{3}{a+3} times \frac{a+1}{a+1}.
\frac{\frac{2\left(a+3\right)-3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Since \frac{2\left(a+3\right)}{\left(a+1\right)\left(a+3\right)} and \frac{3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2a+6-3a-3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Do the multiplications in 2\left(a+3\right)-3\left(a+1\right).
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Combine like terms in 2a+6-3a-3.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{\left(a-2\right)\left(a+1\right)}-\frac{3}{\left(a-2\right)\left(a+3\right)}}
Factor a^{2}-a-2. Factor a^{2}+a-6.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2\left(a+3\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}-\frac{3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+1\right) and \left(a-2\right)\left(a+3\right) is \left(a-2\right)\left(a+1\right)\left(a+3\right). Multiply \frac{2}{\left(a-2\right)\left(a+1\right)} times \frac{a+3}{a+3}. Multiply \frac{3}{\left(a-2\right)\left(a+3\right)} times \frac{a+1}{a+1}.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2\left(a+3\right)-3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Since \frac{2\left(a+3\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} and \frac{3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2a+6-3a-3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Do the multiplications in 2\left(a+3\right)-3\left(a+1\right).
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Combine like terms in 2a+6-3a-3.
\frac{\left(-a+3\right)\left(a-2\right)\left(a+1\right)\left(a+3\right)}{\left(a+1\right)\left(a+3\right)\left(-a+3\right)}
Divide \frac{-a+3}{\left(a+1\right)\left(a+3\right)} by \frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} by multiplying \frac{-a+3}{\left(a+1\right)\left(a+3\right)} by the reciprocal of \frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}.
a-2
Cancel out \left(a+1\right)\left(a+3\right)\left(-a+3\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}