Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{2\left(a+3\right)}{\left(a+1\right)\left(a+3\right)}-\frac{3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and a+3 is \left(a+1\right)\left(a+3\right). Multiply \frac{2}{a+1} times \frac{a+3}{a+3}. Multiply \frac{3}{a+3} times \frac{a+1}{a+1}.
\frac{\frac{2\left(a+3\right)-3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Since \frac{2\left(a+3\right)}{\left(a+1\right)\left(a+3\right)} and \frac{3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2a+6-3a-3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Do the multiplications in 2\left(a+3\right)-3\left(a+1\right).
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Combine like terms in 2a+6-3a-3.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{\left(a-2\right)\left(a+1\right)}-\frac{3}{\left(a-2\right)\left(a+3\right)}}
Factor a^{2}-a-2. Factor a^{2}+a-6.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2\left(a+3\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}-\frac{3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+1\right) and \left(a-2\right)\left(a+3\right) is \left(a-2\right)\left(a+1\right)\left(a+3\right). Multiply \frac{2}{\left(a-2\right)\left(a+1\right)} times \frac{a+3}{a+3}. Multiply \frac{3}{\left(a-2\right)\left(a+3\right)} times \frac{a+1}{a+1}.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2\left(a+3\right)-3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Since \frac{2\left(a+3\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} and \frac{3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2a+6-3a-3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Do the multiplications in 2\left(a+3\right)-3\left(a+1\right).
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Combine like terms in 2a+6-3a-3.
\frac{\left(-a+3\right)\left(a-2\right)\left(a+1\right)\left(a+3\right)}{\left(a+1\right)\left(a+3\right)\left(-a+3\right)}
Divide \frac{-a+3}{\left(a+1\right)\left(a+3\right)} by \frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} by multiplying \frac{-a+3}{\left(a+1\right)\left(a+3\right)} by the reciprocal of \frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}.
a-2
Cancel out \left(a+1\right)\left(a+3\right)\left(-a+3\right) in both numerator and denominator.
\frac{\frac{2\left(a+3\right)}{\left(a+1\right)\left(a+3\right)}-\frac{3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and a+3 is \left(a+1\right)\left(a+3\right). Multiply \frac{2}{a+1} times \frac{a+3}{a+3}. Multiply \frac{3}{a+3} times \frac{a+1}{a+1}.
\frac{\frac{2\left(a+3\right)-3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Since \frac{2\left(a+3\right)}{\left(a+1\right)\left(a+3\right)} and \frac{3\left(a+1\right)}{\left(a+1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2a+6-3a-3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Do the multiplications in 2\left(a+3\right)-3\left(a+1\right).
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{a^{2}-a-2}-\frac{3}{a^{2}+a-6}}
Combine like terms in 2a+6-3a-3.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2}{\left(a-2\right)\left(a+1\right)}-\frac{3}{\left(a-2\right)\left(a+3\right)}}
Factor a^{2}-a-2. Factor a^{2}+a-6.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2\left(a+3\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}-\frac{3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a+1\right) and \left(a-2\right)\left(a+3\right) is \left(a-2\right)\left(a+1\right)\left(a+3\right). Multiply \frac{2}{\left(a-2\right)\left(a+1\right)} times \frac{a+3}{a+3}. Multiply \frac{3}{\left(a-2\right)\left(a+3\right)} times \frac{a+1}{a+1}.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2\left(a+3\right)-3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Since \frac{2\left(a+3\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} and \frac{3\left(a+1\right)}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{2a+6-3a-3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Do the multiplications in 2\left(a+3\right)-3\left(a+1\right).
\frac{\frac{-a+3}{\left(a+1\right)\left(a+3\right)}}{\frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}}
Combine like terms in 2a+6-3a-3.
\frac{\left(-a+3\right)\left(a-2\right)\left(a+1\right)\left(a+3\right)}{\left(a+1\right)\left(a+3\right)\left(-a+3\right)}
Divide \frac{-a+3}{\left(a+1\right)\left(a+3\right)} by \frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)} by multiplying \frac{-a+3}{\left(a+1\right)\left(a+3\right)} by the reciprocal of \frac{-a+3}{\left(a-2\right)\left(a+1\right)\left(a+3\right)}.
a-2
Cancel out \left(a+1\right)\left(a+3\right)\left(-a+3\right) in both numerator and denominator.