Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{2}{a+1}-\frac{2a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}}
Factor a^{2}-1.
\frac{\frac{2\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{2a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-1\right)\left(a+1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{2}{a+1} times \frac{a-1}{a-1}.
\frac{\frac{2\left(a-1\right)-\left(2a-3\right)}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}}
Since \frac{2\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{2a-3}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2a-2-2a+3}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}}
Do the multiplications in 2\left(a-1\right)-\left(2a-3\right).
\frac{\frac{1}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}}
Combine like terms in 2a-2-2a+3.
\frac{a+1}{\left(a-1\right)\left(a+1\right)}
Divide \frac{1}{\left(a-1\right)\left(a+1\right)} by \frac{1}{a+1} by multiplying \frac{1}{\left(a-1\right)\left(a+1\right)} by the reciprocal of \frac{1}{a+1}.
\frac{1}{a-1}
Cancel out a+1 in both numerator and denominator.
\frac{\frac{2}{a+1}-\frac{2a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}}
Factor a^{2}-1.
\frac{\frac{2\left(a-1\right)}{\left(a-1\right)\left(a+1\right)}-\frac{2a-3}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-1\right)\left(a+1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{2}{a+1} times \frac{a-1}{a-1}.
\frac{\frac{2\left(a-1\right)-\left(2a-3\right)}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}}
Since \frac{2\left(a-1\right)}{\left(a-1\right)\left(a+1\right)} and \frac{2a-3}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2a-2-2a+3}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}}
Do the multiplications in 2\left(a-1\right)-\left(2a-3\right).
\frac{\frac{1}{\left(a-1\right)\left(a+1\right)}}{\frac{1}{a+1}}
Combine like terms in 2a-2-2a+3.
\frac{a+1}{\left(a-1\right)\left(a+1\right)}
Divide \frac{1}{\left(a-1\right)\left(a+1\right)} by \frac{1}{a+1} by multiplying \frac{1}{\left(a-1\right)\left(a+1\right)} by the reciprocal of \frac{1}{a+1}.
\frac{1}{a-1}
Cancel out a+1 in both numerator and denominator.