Solve for x
x = \frac{11}{2} = 5\frac{1}{2} = 5.5
Solve for x (complex solution)
x=\frac{\pi n_{1}i}{\ln(\frac{2}{9})}-\frac{\log_{\frac{2}{9}}\left(\frac{31381059609}{2048}\right)}{2}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
\left(\frac{2}{9}\right)^{11}=\left(\frac{2}{9}\right)^{2x}
To multiply powers of the same base, add their exponents. Add 3 and 8 to get 11.
\frac{2048}{31381059609}=\left(\frac{2}{9}\right)^{2x}
Calculate \frac{2}{9} to the power of 11 and get \frac{2048}{31381059609}.
\left(\frac{2}{9}\right)^{2x}=\frac{2048}{31381059609}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{2}{9}\right)^{2x})=\log(\frac{2048}{31381059609})
Take the logarithm of both sides of the equation.
2x\log(\frac{2}{9})=\log(\frac{2048}{31381059609})
The logarithm of a number raised to a power is the power times the logarithm of the number.
2x=\frac{\log(\frac{2048}{31381059609})}{\log(\frac{2}{9})}
Divide both sides by \log(\frac{2}{9}).
2x=\log_{\frac{2}{9}}\left(\frac{2048}{31381059609}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
x=\frac{11}{2}
Divide both sides by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}