Evaluate
-\frac{239}{64}=-3.734375
Factor
-\frac{239}{64} = -3\frac{47}{64} = -3.734375
Share
Copied to clipboard
\frac{1}{4}-\frac{2}{8}-4+\left(\frac{2}{8}-\frac{1}{8}\right)\times 2+\frac{1}{8}\times \frac{1}{8}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{1}{4}-\frac{1}{4}-4+\left(\frac{2}{8}-\frac{1}{8}\right)\times 2+\frac{1}{8}\times \frac{1}{8}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
-4+\left(\frac{2}{8}-\frac{1}{8}\right)\times 2+\frac{1}{8}\times \frac{1}{8}
Subtract \frac{1}{4} from \frac{1}{4} to get 0.
-4+\frac{2-1}{8}\times 2+\frac{1}{8}\times \frac{1}{8}
Since \frac{2}{8} and \frac{1}{8} have the same denominator, subtract them by subtracting their numerators.
-4+\frac{1}{8}\times 2+\frac{1}{8}\times \frac{1}{8}
Subtract 1 from 2 to get 1.
-4+\frac{2}{8}+\frac{1}{8}\times \frac{1}{8}
Multiply \frac{1}{8} and 2 to get \frac{2}{8}.
-4+\frac{1}{4}+\frac{1}{8}\times \frac{1}{8}
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
-\frac{16}{4}+\frac{1}{4}+\frac{1}{8}\times \frac{1}{8}
Convert -4 to fraction -\frac{16}{4}.
\frac{-16+1}{4}+\frac{1}{8}\times \frac{1}{8}
Since -\frac{16}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
-\frac{15}{4}+\frac{1}{8}\times \frac{1}{8}
Add -16 and 1 to get -15.
-\frac{15}{4}+\frac{1\times 1}{8\times 8}
Multiply \frac{1}{8} times \frac{1}{8} by multiplying numerator times numerator and denominator times denominator.
-\frac{15}{4}+\frac{1}{64}
Do the multiplications in the fraction \frac{1\times 1}{8\times 8}.
-\frac{240}{64}+\frac{1}{64}
Least common multiple of 4 and 64 is 64. Convert -\frac{15}{4} and \frac{1}{64} to fractions with denominator 64.
\frac{-240+1}{64}
Since -\frac{240}{64} and \frac{1}{64} have the same denominator, add them by adding their numerators.
-\frac{239}{64}
Add -240 and 1 to get -239.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}