Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{25}+\left(\frac{3}{4}x\right)^{2}=\left(x-\frac{2}{5}\right)^{2}
Calculate \frac{2}{5} to the power of 2 and get \frac{4}{25}.
\frac{4}{25}+\left(\frac{3}{4}\right)^{2}x^{2}=\left(x-\frac{2}{5}\right)^{2}
Expand \left(\frac{3}{4}x\right)^{2}.
\frac{4}{25}+\frac{9}{16}x^{2}=\left(x-\frac{2}{5}\right)^{2}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{4}{25}+\frac{9}{16}x^{2}=x^{2}-\frac{4}{5}x+\frac{4}{25}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{2}{5}\right)^{2}.
\frac{4}{25}+\frac{9}{16}x^{2}-x^{2}=-\frac{4}{5}x+\frac{4}{25}
Subtract x^{2} from both sides.
\frac{4}{25}-\frac{7}{16}x^{2}=-\frac{4}{5}x+\frac{4}{25}
Combine \frac{9}{16}x^{2} and -x^{2} to get -\frac{7}{16}x^{2}.
\frac{4}{25}-\frac{7}{16}x^{2}+\frac{4}{5}x=\frac{4}{25}
Add \frac{4}{5}x to both sides.
\frac{4}{25}-\frac{7}{16}x^{2}+\frac{4}{5}x-\frac{4}{25}=0
Subtract \frac{4}{25} from both sides.
-\frac{7}{16}x^{2}+\frac{4}{5}x=0
Subtract \frac{4}{25} from \frac{4}{25} to get 0.
x\left(-\frac{7}{16}x+\frac{4}{5}\right)=0
Factor out x.
x=0 x=\frac{64}{35}
To find equation solutions, solve x=0 and -\frac{7x}{16}+\frac{4}{5}=0.
\frac{4}{25}+\left(\frac{3}{4}x\right)^{2}=\left(x-\frac{2}{5}\right)^{2}
Calculate \frac{2}{5} to the power of 2 and get \frac{4}{25}.
\frac{4}{25}+\left(\frac{3}{4}\right)^{2}x^{2}=\left(x-\frac{2}{5}\right)^{2}
Expand \left(\frac{3}{4}x\right)^{2}.
\frac{4}{25}+\frac{9}{16}x^{2}=\left(x-\frac{2}{5}\right)^{2}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{4}{25}+\frac{9}{16}x^{2}=x^{2}-\frac{4}{5}x+\frac{4}{25}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{2}{5}\right)^{2}.
\frac{4}{25}+\frac{9}{16}x^{2}-x^{2}=-\frac{4}{5}x+\frac{4}{25}
Subtract x^{2} from both sides.
\frac{4}{25}-\frac{7}{16}x^{2}=-\frac{4}{5}x+\frac{4}{25}
Combine \frac{9}{16}x^{2} and -x^{2} to get -\frac{7}{16}x^{2}.
\frac{4}{25}-\frac{7}{16}x^{2}+\frac{4}{5}x=\frac{4}{25}
Add \frac{4}{5}x to both sides.
\frac{4}{25}-\frac{7}{16}x^{2}+\frac{4}{5}x-\frac{4}{25}=0
Subtract \frac{4}{25} from both sides.
-\frac{7}{16}x^{2}+\frac{4}{5}x=0
Subtract \frac{4}{25} from \frac{4}{25} to get 0.
x=\frac{-\frac{4}{5}±\sqrt{\left(\frac{4}{5}\right)^{2}}}{2\left(-\frac{7}{16}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{7}{16} for a, \frac{4}{5} for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{4}{5}±\frac{4}{5}}{2\left(-\frac{7}{16}\right)}
Take the square root of \left(\frac{4}{5}\right)^{2}.
x=\frac{-\frac{4}{5}±\frac{4}{5}}{-\frac{7}{8}}
Multiply 2 times -\frac{7}{16}.
x=\frac{0}{-\frac{7}{8}}
Now solve the equation x=\frac{-\frac{4}{5}±\frac{4}{5}}{-\frac{7}{8}} when ± is plus. Add -\frac{4}{5} to \frac{4}{5} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=0
Divide 0 by -\frac{7}{8} by multiplying 0 by the reciprocal of -\frac{7}{8}.
x=-\frac{\frac{8}{5}}{-\frac{7}{8}}
Now solve the equation x=\frac{-\frac{4}{5}±\frac{4}{5}}{-\frac{7}{8}} when ± is minus. Subtract \frac{4}{5} from -\frac{4}{5} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{64}{35}
Divide -\frac{8}{5} by -\frac{7}{8} by multiplying -\frac{8}{5} by the reciprocal of -\frac{7}{8}.
x=0 x=\frac{64}{35}
The equation is now solved.
\frac{4}{25}+\left(\frac{3}{4}x\right)^{2}=\left(x-\frac{2}{5}\right)^{2}
Calculate \frac{2}{5} to the power of 2 and get \frac{4}{25}.
\frac{4}{25}+\left(\frac{3}{4}\right)^{2}x^{2}=\left(x-\frac{2}{5}\right)^{2}
Expand \left(\frac{3}{4}x\right)^{2}.
\frac{4}{25}+\frac{9}{16}x^{2}=\left(x-\frac{2}{5}\right)^{2}
Calculate \frac{3}{4} to the power of 2 and get \frac{9}{16}.
\frac{4}{25}+\frac{9}{16}x^{2}=x^{2}-\frac{4}{5}x+\frac{4}{25}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-\frac{2}{5}\right)^{2}.
\frac{4}{25}+\frac{9}{16}x^{2}-x^{2}=-\frac{4}{5}x+\frac{4}{25}
Subtract x^{2} from both sides.
\frac{4}{25}-\frac{7}{16}x^{2}=-\frac{4}{5}x+\frac{4}{25}
Combine \frac{9}{16}x^{2} and -x^{2} to get -\frac{7}{16}x^{2}.
\frac{4}{25}-\frac{7}{16}x^{2}+\frac{4}{5}x=\frac{4}{25}
Add \frac{4}{5}x to both sides.
-\frac{7}{16}x^{2}+\frac{4}{5}x=\frac{4}{25}-\frac{4}{25}
Subtract \frac{4}{25} from both sides.
-\frac{7}{16}x^{2}+\frac{4}{5}x=0
Subtract \frac{4}{25} from \frac{4}{25} to get 0.
\frac{-\frac{7}{16}x^{2}+\frac{4}{5}x}{-\frac{7}{16}}=\frac{0}{-\frac{7}{16}}
Divide both sides of the equation by -\frac{7}{16}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{4}{5}}{-\frac{7}{16}}x=\frac{0}{-\frac{7}{16}}
Dividing by -\frac{7}{16} undoes the multiplication by -\frac{7}{16}.
x^{2}-\frac{64}{35}x=\frac{0}{-\frac{7}{16}}
Divide \frac{4}{5} by -\frac{7}{16} by multiplying \frac{4}{5} by the reciprocal of -\frac{7}{16}.
x^{2}-\frac{64}{35}x=0
Divide 0 by -\frac{7}{16} by multiplying 0 by the reciprocal of -\frac{7}{16}.
x^{2}-\frac{64}{35}x+\left(-\frac{32}{35}\right)^{2}=\left(-\frac{32}{35}\right)^{2}
Divide -\frac{64}{35}, the coefficient of the x term, by 2 to get -\frac{32}{35}. Then add the square of -\frac{32}{35} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{64}{35}x+\frac{1024}{1225}=\frac{1024}{1225}
Square -\frac{32}{35} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{32}{35}\right)^{2}=\frac{1024}{1225}
Factor x^{2}-\frac{64}{35}x+\frac{1024}{1225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{32}{35}\right)^{2}}=\sqrt{\frac{1024}{1225}}
Take the square root of both sides of the equation.
x-\frac{32}{35}=\frac{32}{35} x-\frac{32}{35}=-\frac{32}{35}
Simplify.
x=\frac{64}{35} x=0
Add \frac{32}{35} to both sides of the equation.