Solve for x
x=\frac{1}{12}\approx 0.083333333
Graph
Share
Copied to clipboard
\frac{2}{5}+\frac{1}{10}=\frac{27}{4}x\left(\frac{1}{6}+\frac{1}{2}+\frac{2}{9}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{4}{10}+\frac{1}{10}=\frac{27}{4}x\left(\frac{1}{6}+\frac{1}{2}+\frac{2}{9}\right)
Least common multiple of 5 and 10 is 10. Convert \frac{2}{5} and \frac{1}{10} to fractions with denominator 10.
\frac{4+1}{10}=\frac{27}{4}x\left(\frac{1}{6}+\frac{1}{2}+\frac{2}{9}\right)
Since \frac{4}{10} and \frac{1}{10} have the same denominator, add them by adding their numerators.
\frac{5}{10}=\frac{27}{4}x\left(\frac{1}{6}+\frac{1}{2}+\frac{2}{9}\right)
Add 4 and 1 to get 5.
\frac{1}{2}=\frac{27}{4}x\left(\frac{1}{6}+\frac{1}{2}+\frac{2}{9}\right)
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{2}=\frac{27}{4}x\left(\frac{1}{6}+\frac{3}{6}+\frac{2}{9}\right)
Least common multiple of 6 and 2 is 6. Convert \frac{1}{6} and \frac{1}{2} to fractions with denominator 6.
\frac{1}{2}=\frac{27}{4}x\left(\frac{1+3}{6}+\frac{2}{9}\right)
Since \frac{1}{6} and \frac{3}{6} have the same denominator, add them by adding their numerators.
\frac{1}{2}=\frac{27}{4}x\left(\frac{4}{6}+\frac{2}{9}\right)
Add 1 and 3 to get 4.
\frac{1}{2}=\frac{27}{4}x\left(\frac{2}{3}+\frac{2}{9}\right)
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{1}{2}=\frac{27}{4}x\left(\frac{6}{9}+\frac{2}{9}\right)
Least common multiple of 3 and 9 is 9. Convert \frac{2}{3} and \frac{2}{9} to fractions with denominator 9.
\frac{1}{2}=\frac{27}{4}x\times \frac{6+2}{9}
Since \frac{6}{9} and \frac{2}{9} have the same denominator, add them by adding their numerators.
\frac{1}{2}=\frac{27}{4}x\times \frac{8}{9}
Add 6 and 2 to get 8.
\frac{1}{2}=\frac{27\times 8}{4\times 9}x
Multiply \frac{27}{4} times \frac{8}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{2}=\frac{216}{36}x
Do the multiplications in the fraction \frac{27\times 8}{4\times 9}.
\frac{1}{2}=6x
Divide 216 by 36 to get 6.
6x=\frac{1}{2}
Swap sides so that all variable terms are on the left hand side.
x=\frac{\frac{1}{2}}{6}
Divide both sides by 6.
x=\frac{1}{2\times 6}
Express \frac{\frac{1}{2}}{6} as a single fraction.
x=\frac{1}{12}
Multiply 2 and 6 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}