Evaluate
\frac{30}{7}\approx 4.285714286
Factor
\frac{2 \cdot 3 \cdot 5}{7} = 4\frac{2}{7} = 4.285714285714286
Share
Copied to clipboard
\frac{\frac{1}{2}+\frac{1}{6}}{\frac{5}{9}-\frac{2}{15}}\times \frac{38}{7}-\frac{30}{7}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{3}{6}+\frac{1}{6}}{\frac{5}{9}-\frac{2}{15}}\times \frac{38}{7}-\frac{30}{7}
Least common multiple of 2 and 6 is 6. Convert \frac{1}{2} and \frac{1}{6} to fractions with denominator 6.
\frac{\frac{3+1}{6}}{\frac{5}{9}-\frac{2}{15}}\times \frac{38}{7}-\frac{30}{7}
Since \frac{3}{6} and \frac{1}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{4}{6}}{\frac{5}{9}-\frac{2}{15}}\times \frac{38}{7}-\frac{30}{7}
Add 3 and 1 to get 4.
\frac{\frac{2}{3}}{\frac{5}{9}-\frac{2}{15}}\times \frac{38}{7}-\frac{30}{7}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{2}{3}}{\frac{25}{45}-\frac{6}{45}}\times \frac{38}{7}-\frac{30}{7}
Least common multiple of 9 and 15 is 45. Convert \frac{5}{9} and \frac{2}{15} to fractions with denominator 45.
\frac{\frac{2}{3}}{\frac{25-6}{45}}\times \frac{38}{7}-\frac{30}{7}
Since \frac{25}{45} and \frac{6}{45} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2}{3}}{\frac{19}{45}}\times \frac{38}{7}-\frac{30}{7}
Subtract 6 from 25 to get 19.
\frac{2}{3}\times \frac{45}{19}\times \frac{38}{7}-\frac{30}{7}
Divide \frac{2}{3} by \frac{19}{45} by multiplying \frac{2}{3} by the reciprocal of \frac{19}{45}.
\frac{2\times 45}{3\times 19}\times \frac{38}{7}-\frac{30}{7}
Multiply \frac{2}{3} times \frac{45}{19} by multiplying numerator times numerator and denominator times denominator.
\frac{90}{57}\times \frac{38}{7}-\frac{30}{7}
Do the multiplications in the fraction \frac{2\times 45}{3\times 19}.
\frac{30}{19}\times \frac{38}{7}-\frac{30}{7}
Reduce the fraction \frac{90}{57} to lowest terms by extracting and canceling out 3.
\frac{30\times 38}{19\times 7}-\frac{30}{7}
Multiply \frac{30}{19} times \frac{38}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1140}{133}-\frac{30}{7}
Do the multiplications in the fraction \frac{30\times 38}{19\times 7}.
\frac{60}{7}-\frac{30}{7}
Reduce the fraction \frac{1140}{133} to lowest terms by extracting and canceling out 19.
\frac{60-30}{7}
Since \frac{60}{7} and \frac{30}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{30}{7}
Subtract 30 from 60 to get 30.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}