Evaluate
-\frac{43}{10}=-4.3
Factor
-\frac{43}{10} = -4\frac{3}{10} = -4.3
Share
Copied to clipboard
\frac{\frac{2}{3}-\left(-\frac{7}{2}\right)-\frac{5}{6}+\frac{1}{4}}{-\frac{4}{3}+\frac{2}{3}-\frac{1}{6}}
Fraction \frac{-7}{2} can be rewritten as -\frac{7}{2} by extracting the negative sign.
\frac{\frac{2}{3}+\frac{7}{2}-\frac{5}{6}+\frac{1}{4}}{-\frac{4}{3}+\frac{2}{3}-\frac{1}{6}}
The opposite of -\frac{7}{2} is \frac{7}{2}.
\frac{\frac{4}{6}+\frac{21}{6}-\frac{5}{6}+\frac{1}{4}}{-\frac{4}{3}+\frac{2}{3}-\frac{1}{6}}
Least common multiple of 3 and 2 is 6. Convert \frac{2}{3} and \frac{7}{2} to fractions with denominator 6.
\frac{\frac{4+21}{6}-\frac{5}{6}+\frac{1}{4}}{-\frac{4}{3}+\frac{2}{3}-\frac{1}{6}}
Since \frac{4}{6} and \frac{21}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{25}{6}-\frac{5}{6}+\frac{1}{4}}{-\frac{4}{3}+\frac{2}{3}-\frac{1}{6}}
Add 4 and 21 to get 25.
\frac{\frac{25-5}{6}+\frac{1}{4}}{-\frac{4}{3}+\frac{2}{3}-\frac{1}{6}}
Since \frac{25}{6} and \frac{5}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{20}{6}+\frac{1}{4}}{-\frac{4}{3}+\frac{2}{3}-\frac{1}{6}}
Subtract 5 from 25 to get 20.
\frac{\frac{10}{3}+\frac{1}{4}}{-\frac{4}{3}+\frac{2}{3}-\frac{1}{6}}
Reduce the fraction \frac{20}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{40}{12}+\frac{3}{12}}{-\frac{4}{3}+\frac{2}{3}-\frac{1}{6}}
Least common multiple of 3 and 4 is 12. Convert \frac{10}{3} and \frac{1}{4} to fractions with denominator 12.
\frac{\frac{40+3}{12}}{-\frac{4}{3}+\frac{2}{3}-\frac{1}{6}}
Since \frac{40}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{\frac{43}{12}}{-\frac{4}{3}+\frac{2}{3}-\frac{1}{6}}
Add 40 and 3 to get 43.
\frac{\frac{43}{12}}{\frac{-4+2}{3}-\frac{1}{6}}
Since -\frac{4}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{43}{12}}{-\frac{2}{3}-\frac{1}{6}}
Add -4 and 2 to get -2.
\frac{\frac{43}{12}}{-\frac{4}{6}-\frac{1}{6}}
Least common multiple of 3 and 6 is 6. Convert -\frac{2}{3} and \frac{1}{6} to fractions with denominator 6.
\frac{\frac{43}{12}}{\frac{-4-1}{6}}
Since -\frac{4}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{43}{12}}{-\frac{5}{6}}
Subtract 1 from -4 to get -5.
\frac{43}{12}\left(-\frac{6}{5}\right)
Divide \frac{43}{12} by -\frac{5}{6} by multiplying \frac{43}{12} by the reciprocal of -\frac{5}{6}.
\frac{43\left(-6\right)}{12\times 5}
Multiply \frac{43}{12} times -\frac{6}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{-258}{60}
Do the multiplications in the fraction \frac{43\left(-6\right)}{12\times 5}.
-\frac{43}{10}
Reduce the fraction \frac{-258}{60} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}