Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{8}{12}+\frac{5}{12}-\frac{7}{9}\right)\times \frac{9}{11}+\frac{\frac{1}{4}-\frac{1}{3}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Least common multiple of 3 and 12 is 12. Convert \frac{2}{3} and \frac{5}{12} to fractions with denominator 12.
\left(\frac{8+5}{12}-\frac{7}{9}\right)\times \frac{9}{11}+\frac{\frac{1}{4}-\frac{1}{3}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Since \frac{8}{12} and \frac{5}{12} have the same denominator, add them by adding their numerators.
\left(\frac{13}{12}-\frac{7}{9}\right)\times \frac{9}{11}+\frac{\frac{1}{4}-\frac{1}{3}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Add 8 and 5 to get 13.
\left(\frac{39}{36}-\frac{28}{36}\right)\times \frac{9}{11}+\frac{\frac{1}{4}-\frac{1}{3}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Least common multiple of 12 and 9 is 36. Convert \frac{13}{12} and \frac{7}{9} to fractions with denominator 36.
\frac{39-28}{36}\times \frac{9}{11}+\frac{\frac{1}{4}-\frac{1}{3}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Since \frac{39}{36} and \frac{28}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{36}\times \frac{9}{11}+\frac{\frac{1}{4}-\frac{1}{3}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Subtract 28 from 39 to get 11.
\frac{11\times 9}{36\times 11}+\frac{\frac{1}{4}-\frac{1}{3}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Multiply \frac{11}{36} times \frac{9}{11} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{36}+\frac{\frac{1}{4}-\frac{1}{3}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Cancel out 11 in both numerator and denominator.
\frac{1}{4}+\frac{\frac{1}{4}-\frac{1}{3}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Reduce the fraction \frac{9}{36} to lowest terms by extracting and canceling out 9.
\frac{1}{4}+\frac{\frac{3}{12}-\frac{4}{12}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Least common multiple of 4 and 3 is 12. Convert \frac{1}{4} and \frac{1}{3} to fractions with denominator 12.
\frac{1}{4}+\frac{\frac{3-4}{12}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Since \frac{3}{12} and \frac{4}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+\frac{-\frac{1}{12}-\frac{1}{2}}{\frac{3\times 2+1}{2}}
Subtract 4 from 3 to get -1.
\frac{1}{4}+\frac{-\frac{1}{12}-\frac{6}{12}}{\frac{3\times 2+1}{2}}
Least common multiple of 12 and 2 is 12. Convert -\frac{1}{12} and \frac{1}{2} to fractions with denominator 12.
\frac{1}{4}+\frac{\frac{-1-6}{12}}{\frac{3\times 2+1}{2}}
Since -\frac{1}{12} and \frac{6}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}+\frac{-\frac{7}{12}}{\frac{3\times 2+1}{2}}
Subtract 6 from -1 to get -7.
\frac{1}{4}+\frac{-\frac{7}{12}}{\frac{6+1}{2}}
Multiply 3 and 2 to get 6.
\frac{1}{4}+\frac{-\frac{7}{12}}{\frac{7}{2}}
Add 6 and 1 to get 7.
\frac{1}{4}-\frac{7}{12}\times \frac{2}{7}
Divide -\frac{7}{12} by \frac{7}{2} by multiplying -\frac{7}{12} by the reciprocal of \frac{7}{2}.
\frac{1}{4}+\frac{-7\times 2}{12\times 7}
Multiply -\frac{7}{12} times \frac{2}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}+\frac{-14}{84}
Do the multiplications in the fraction \frac{-7\times 2}{12\times 7}.
\frac{1}{4}-\frac{1}{6}
Reduce the fraction \frac{-14}{84} to lowest terms by extracting and canceling out 14.
\frac{3}{12}-\frac{2}{12}
Least common multiple of 4 and 6 is 12. Convert \frac{1}{4} and \frac{1}{6} to fractions with denominator 12.
\frac{3-2}{12}
Since \frac{3}{12} and \frac{2}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{12}
Subtract 2 from 3 to get 1.