Factor
\left(x-10\right)\left(x-8\right)
Evaluate
\left(x-10\right)\left(x-8\right)
Graph
Share
Copied to clipboard
factor(\left(\frac{2^{3}-x}{2-3}-1\right)^{2}-\sqrt{3}\sqrt{\frac{1}{3}}+\frac{\frac{1-1}{2}}{\frac{5}{1}})
Divide 3 by 3 to get 1.
factor(\left(\frac{8-x}{2-3}-1\right)^{2}-\sqrt{3}\sqrt{\frac{1}{3}}+\frac{\frac{1-1}{2}}{\frac{5}{1}})
Calculate 2 to the power of 3 and get 8.
factor(\left(\frac{8-x}{-1}-1\right)^{2}-\sqrt{3}\sqrt{\frac{1}{3}}+\frac{\frac{1-1}{2}}{\frac{5}{1}})
Subtract 3 from 2 to get -1.
factor(\left(-8+x-1\right)^{2}-\sqrt{3}\sqrt{\frac{1}{3}}+\frac{\frac{1-1}{2}}{\frac{5}{1}})
Anything divided by -1 gives its opposite. To find the opposite of 8-x, find the opposite of each term.
factor(\left(-9+x\right)^{2}-\sqrt{3}\sqrt{\frac{1}{3}}+\frac{\frac{1-1}{2}}{\frac{5}{1}})
Subtract 1 from -8 to get -9.
factor(\left(-9+x\right)^{2}-\sqrt{3}\times \frac{\sqrt{1}}{\sqrt{3}}+\frac{\frac{1-1}{2}}{\frac{5}{1}})
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
factor(\left(-9+x\right)^{2}-\sqrt{3}\times \frac{1}{\sqrt{3}}+\frac{\frac{1-1}{2}}{\frac{5}{1}})
Calculate the square root of 1 and get 1.
factor(\left(-9+x\right)^{2}-\sqrt{3}\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{\frac{1-1}{2}}{\frac{5}{1}})
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
factor(\left(-9+x\right)^{2}-\sqrt{3}\times \frac{\sqrt{3}}{3}+\frac{\frac{1-1}{2}}{\frac{5}{1}})
The square of \sqrt{3} is 3.
factor(\left(-9+x\right)^{2}-\frac{\sqrt{3}\sqrt{3}}{3}+\frac{\frac{1-1}{2}}{\frac{5}{1}})
Express \sqrt{3}\times \frac{\sqrt{3}}{3} as a single fraction.
factor(\left(-9+x\right)^{2}-\frac{3}{3}+\frac{\frac{1-1}{2}}{\frac{5}{1}})
Multiply \sqrt{3} and \sqrt{3} to get 3.
factor(\left(-9+x\right)^{2}-1+\frac{\frac{1-1}{2}}{\frac{5}{1}})
Divide 3 by 3 to get 1.
factor(\left(-9+x\right)^{2}-1+\frac{1-1}{2\times 5})
Divide \frac{1-1}{2} by \frac{5}{1} by multiplying \frac{1-1}{2} by the reciprocal of \frac{5}{1}.
factor(\left(-9+x\right)^{2}-1+\frac{0}{2\times 5})
Subtract 1 from 1 to get 0.
factor(\left(-9+x\right)^{2}-1+\frac{0}{10})
Multiply 2 and 5 to get 10.
factor(\left(-9+x\right)^{2}-1+0)
Zero divided by any non-zero number gives zero.
factor(\left(-9+x\right)^{2}-1)
Add -1 and 0 to get -1.
\left(x-10\right)\left(x-8\right)
The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}