Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{13\times 7}{5\times 26}\times \frac{-50}{7}\times \frac{-1}{5}
Multiply \frac{13}{5} times \frac{7}{26} by multiplying numerator times numerator and denominator times denominator.
\frac{91}{130}\times \frac{-50}{7}\times \frac{-1}{5}
Do the multiplications in the fraction \frac{13\times 7}{5\times 26}.
\frac{7}{10}\times \frac{-50}{7}\times \frac{-1}{5}
Reduce the fraction \frac{91}{130} to lowest terms by extracting and canceling out 13.
\frac{7}{10}\left(-\frac{50}{7}\right)\times \frac{-1}{5}
Fraction \frac{-50}{7} can be rewritten as -\frac{50}{7} by extracting the negative sign.
\frac{7\left(-50\right)}{10\times 7}\times \frac{-1}{5}
Multiply \frac{7}{10} times -\frac{50}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-50}{10}\times \frac{-1}{5}
Cancel out 7 in both numerator and denominator.
-5\times \frac{-1}{5}
Divide -50 by 10 to get -5.
-5\left(-\frac{1}{5}\right)
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
1
Multiply -5 times -\frac{1}{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}