Evaluate
\frac{91}{4}=22.75
Factor
\frac{7 \cdot 13}{2 ^ {2}} = 22\frac{3}{4} = 22.75
Share
Copied to clipboard
\frac{\frac{13\times 7}{4\times 2}}{\frac{2}{5}\left(2-\frac{3}{4}\right)}
Multiply \frac{13}{4} times \frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{91}{8}}{\frac{2}{5}\left(2-\frac{3}{4}\right)}
Do the multiplications in the fraction \frac{13\times 7}{4\times 2}.
\frac{\frac{91}{8}}{\frac{2}{5}\left(\frac{8}{4}-\frac{3}{4}\right)}
Convert 2 to fraction \frac{8}{4}.
\frac{\frac{91}{8}}{\frac{2}{5}\times \frac{8-3}{4}}
Since \frac{8}{4} and \frac{3}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{91}{8}}{\frac{2}{5}\times \frac{5}{4}}
Subtract 3 from 8 to get 5.
\frac{\frac{91}{8}}{\frac{2\times 5}{5\times 4}}
Multiply \frac{2}{5} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{91}{8}}{\frac{2}{4}}
Cancel out 5 in both numerator and denominator.
\frac{\frac{91}{8}}{\frac{1}{2}}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{91}{8}\times 2
Divide \frac{91}{8} by \frac{1}{2} by multiplying \frac{91}{8} by the reciprocal of \frac{1}{2}.
\frac{91\times 2}{8}
Express \frac{91}{8}\times 2 as a single fraction.
\frac{182}{8}
Multiply 91 and 2 to get 182.
\frac{91}{4}
Reduce the fraction \frac{182}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}