Evaluate
\frac{399}{22}\approx 18.136363636
Factor
\frac{3 \cdot 7 \cdot 19}{2 \cdot 11} = 18\frac{3}{22} = 18.136363636363637
Share
Copied to clipboard
\frac{\frac{7}{6}-\frac{1}{11}+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Reduce the fraction \frac{105}{90} to lowest terms by extracting and canceling out 15.
\frac{\frac{77}{66}-\frac{6}{66}+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Least common multiple of 6 and 11 is 66. Convert \frac{7}{6} and \frac{1}{11} to fractions with denominator 66.
\frac{\frac{77-6}{66}+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Since \frac{77}{66} and \frac{6}{66} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{71}{66}+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Subtract 6 from 77 to get 71.
\frac{\frac{71}{66}+\frac{2}{15}}{\frac{3}{9}-\frac{24}{90}}
Reduce the fraction \frac{12}{90} to lowest terms by extracting and canceling out 6.
\frac{\frac{355}{330}+\frac{44}{330}}{\frac{3}{9}-\frac{24}{90}}
Least common multiple of 66 and 15 is 330. Convert \frac{71}{66} and \frac{2}{15} to fractions with denominator 330.
\frac{\frac{355+44}{330}}{\frac{3}{9}-\frac{24}{90}}
Since \frac{355}{330} and \frac{44}{330} have the same denominator, add them by adding their numerators.
\frac{\frac{399}{330}}{\frac{3}{9}-\frac{24}{90}}
Add 355 and 44 to get 399.
\frac{\frac{133}{110}}{\frac{3}{9}-\frac{24}{90}}
Reduce the fraction \frac{399}{330} to lowest terms by extracting and canceling out 3.
\frac{\frac{133}{110}}{\frac{1}{3}-\frac{24}{90}}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{\frac{133}{110}}{\frac{1}{3}-\frac{4}{15}}
Reduce the fraction \frac{24}{90} to lowest terms by extracting and canceling out 6.
\frac{\frac{133}{110}}{\frac{5}{15}-\frac{4}{15}}
Least common multiple of 3 and 15 is 15. Convert \frac{1}{3} and \frac{4}{15} to fractions with denominator 15.
\frac{\frac{133}{110}}{\frac{5-4}{15}}
Since \frac{5}{15} and \frac{4}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{133}{110}}{\frac{1}{15}}
Subtract 4 from 5 to get 1.
\frac{133}{110}\times 15
Divide \frac{133}{110} by \frac{1}{15} by multiplying \frac{133}{110} by the reciprocal of \frac{1}{15}.
\frac{133\times 15}{110}
Express \frac{133}{110}\times 15 as a single fraction.
\frac{1995}{110}
Multiply 133 and 15 to get 1995.
\frac{399}{22}
Reduce the fraction \frac{1995}{110} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}