Evaluate
\frac{9}{2}=4.5
Factor
\frac{3 ^ {2}}{2} = 4\frac{1}{2} = 4.5
Share
Copied to clipboard
\frac{\frac{105}{90}-1+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Divide 1 by 1 to get 1.
\frac{\frac{7}{6}-1+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Reduce the fraction \frac{105}{90} to lowest terms by extracting and canceling out 15.
\frac{\frac{7}{6}-\frac{6}{6}+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Convert 1 to fraction \frac{6}{6}.
\frac{\frac{7-6}{6}+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Since \frac{7}{6} and \frac{6}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1}{6}+\frac{12}{90}}{\frac{3}{9}-\frac{24}{90}}
Subtract 6 from 7 to get 1.
\frac{\frac{1}{6}+\frac{2}{15}}{\frac{3}{9}-\frac{24}{90}}
Reduce the fraction \frac{12}{90} to lowest terms by extracting and canceling out 6.
\frac{\frac{5}{30}+\frac{4}{30}}{\frac{3}{9}-\frac{24}{90}}
Least common multiple of 6 and 15 is 30. Convert \frac{1}{6} and \frac{2}{15} to fractions with denominator 30.
\frac{\frac{5+4}{30}}{\frac{3}{9}-\frac{24}{90}}
Since \frac{5}{30} and \frac{4}{30} have the same denominator, add them by adding their numerators.
\frac{\frac{9}{30}}{\frac{3}{9}-\frac{24}{90}}
Add 5 and 4 to get 9.
\frac{\frac{3}{10}}{\frac{3}{9}-\frac{24}{90}}
Reduce the fraction \frac{9}{30} to lowest terms by extracting and canceling out 3.
\frac{\frac{3}{10}}{\frac{1}{3}-\frac{24}{90}}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{\frac{3}{10}}{\frac{1}{3}-\frac{4}{15}}
Reduce the fraction \frac{24}{90} to lowest terms by extracting and canceling out 6.
\frac{\frac{3}{10}}{\frac{5}{15}-\frac{4}{15}}
Least common multiple of 3 and 15 is 15. Convert \frac{1}{3} and \frac{4}{15} to fractions with denominator 15.
\frac{\frac{3}{10}}{\frac{5-4}{15}}
Since \frac{5}{15} and \frac{4}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3}{10}}{\frac{1}{15}}
Subtract 4 from 5 to get 1.
\frac{3}{10}\times 15
Divide \frac{3}{10} by \frac{1}{15} by multiplying \frac{3}{10} by the reciprocal of \frac{1}{15}.
\frac{3\times 15}{10}
Express \frac{3}{10}\times 15 as a single fraction.
\frac{45}{10}
Multiply 3 and 15 to get 45.
\frac{9}{2}
Reduce the fraction \frac{45}{10} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}