Evaluate
-73
Factor
-73
Share
Copied to clipboard
\left(\frac{10\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}+\frac{1}{\sqrt{3}-2}-\frac{6}{3-\sqrt{3}}\right)\left(3\sqrt{3}+10\right)
Rationalize the denominator of \frac{10}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
\left(\frac{10\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}+\frac{1}{\sqrt{3}-2}-\frac{6}{3-\sqrt{3}}\right)\left(3\sqrt{3}+10\right)
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(\frac{10\left(\sqrt{3}-1\right)}{3-1}+\frac{1}{\sqrt{3}-2}-\frac{6}{3-\sqrt{3}}\right)\left(3\sqrt{3}+10\right)
Square \sqrt{3}. Square 1.
\left(\frac{10\left(\sqrt{3}-1\right)}{2}+\frac{1}{\sqrt{3}-2}-\frac{6}{3-\sqrt{3}}\right)\left(3\sqrt{3}+10\right)
Subtract 1 from 3 to get 2.
\left(5\left(\sqrt{3}-1\right)+\frac{1}{\sqrt{3}-2}-\frac{6}{3-\sqrt{3}}\right)\left(3\sqrt{3}+10\right)
Divide 10\left(\sqrt{3}-1\right) by 2 to get 5\left(\sqrt{3}-1\right).
\left(5\left(\sqrt{3}-1\right)+\frac{\sqrt{3}+2}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{6}{3-\sqrt{3}}\right)\left(3\sqrt{3}+10\right)
Rationalize the denominator of \frac{1}{\sqrt{3}-2} by multiplying numerator and denominator by \sqrt{3}+2.
\left(5\left(\sqrt{3}-1\right)+\frac{\sqrt{3}+2}{\left(\sqrt{3}\right)^{2}-2^{2}}-\frac{6}{3-\sqrt{3}}\right)\left(3\sqrt{3}+10\right)
Consider \left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(5\left(\sqrt{3}-1\right)+\frac{\sqrt{3}+2}{3-4}-\frac{6}{3-\sqrt{3}}\right)\left(3\sqrt{3}+10\right)
Square \sqrt{3}. Square 2.
\left(5\left(\sqrt{3}-1\right)+\frac{\sqrt{3}+2}{-1}-\frac{6}{3-\sqrt{3}}\right)\left(3\sqrt{3}+10\right)
Subtract 4 from 3 to get -1.
\left(5\left(\sqrt{3}-1\right)-\sqrt{3}-2-\frac{6}{3-\sqrt{3}}\right)\left(3\sqrt{3}+10\right)
Anything divided by -1 gives its opposite. To find the opposite of \sqrt{3}+2, find the opposite of each term.
\left(5\left(\sqrt{3}-1\right)-\sqrt{3}-2-\frac{6\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}\right)\left(3\sqrt{3}+10\right)
Rationalize the denominator of \frac{6}{3-\sqrt{3}} by multiplying numerator and denominator by 3+\sqrt{3}.
\left(5\left(\sqrt{3}-1\right)-\sqrt{3}-2-\frac{6\left(3+\sqrt{3}\right)}{3^{2}-\left(\sqrt{3}\right)^{2}}\right)\left(3\sqrt{3}+10\right)
Consider \left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\left(5\left(\sqrt{3}-1\right)-\sqrt{3}-2-\frac{6\left(3+\sqrt{3}\right)}{9-3}\right)\left(3\sqrt{3}+10\right)
Square 3. Square \sqrt{3}.
\left(5\left(\sqrt{3}-1\right)-\sqrt{3}-2-\frac{6\left(3+\sqrt{3}\right)}{6}\right)\left(3\sqrt{3}+10\right)
Subtract 3 from 9 to get 6.
\left(5\left(\sqrt{3}-1\right)-\sqrt{3}-2-\left(3+\sqrt{3}\right)\right)\left(3\sqrt{3}+10\right)
Cancel out 6 and 6.
\left(5\left(\sqrt{3}-1\right)-\sqrt{3}-2-3-\sqrt{3}\right)\left(3\sqrt{3}+10\right)
To find the opposite of 3+\sqrt{3}, find the opposite of each term.
\left(5\left(\sqrt{3}-1\right)-\sqrt{3}-5-\sqrt{3}\right)\left(3\sqrt{3}+10\right)
Subtract 3 from -2 to get -5.
\left(5\left(\sqrt{3}-1\right)-2\sqrt{3}-5\right)\left(3\sqrt{3}+10\right)
Combine -\sqrt{3} and -\sqrt{3} to get -2\sqrt{3}.
\left(5\sqrt{3}-5-2\sqrt{3}-5\right)\left(3\sqrt{3}+10\right)
Use the distributive property to multiply 5 by \sqrt{3}-1.
\left(3\sqrt{3}-5-5\right)\left(3\sqrt{3}+10\right)
Combine 5\sqrt{3} and -2\sqrt{3} to get 3\sqrt{3}.
\left(3\sqrt{3}-10\right)\left(3\sqrt{3}+10\right)
Subtract 5 from -5 to get -10.
\left(3\sqrt{3}\right)^{2}-10^{2}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}\left(\sqrt{3}\right)^{2}-10^{2}
Expand \left(3\sqrt{3}\right)^{2}.
9\left(\sqrt{3}\right)^{2}-10^{2}
Calculate 3 to the power of 2 and get 9.
9\times 3-10^{2}
The square of \sqrt{3} is 3.
27-10^{2}
Multiply 9 and 3 to get 27.
27-100
Calculate 10 to the power of 2 and get 100.
-73
Subtract 100 from 27 to get -73.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}