Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{2019}
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
\left(\frac{-2i}{2}\right)^{2019}
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\left(-i\right)^{2019}
Divide -2i by 2 to get -i.
i
Calculate -i to the power of 2019 and get i.
Re(\left(\frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{2019})
Multiply both numerator and denominator of \frac{1-i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\left(\frac{-2i}{2}\right)^{2019})
Do the multiplications in \frac{\left(1-i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\left(-i\right)^{2019})
Divide -2i by 2 to get -i.
Re(i)
Calculate -i to the power of 2019 and get i.
0
The real part of i is 0.