Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(1-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{3}
Multiply both numerator and denominator of \frac{1-3i}{1+i} by the complex conjugate of the denominator, 1-i.
\left(\frac{-2-4i}{2}\right)^{3}
Do the multiplications in \frac{\left(1-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
\left(-1-2i\right)^{3}
Divide -2-4i by 2 to get -1-2i.
11+2i
Calculate -1-2i to the power of 3 and get 11+2i.
Re(\left(\frac{\left(1-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}\right)^{3})
Multiply both numerator and denominator of \frac{1-3i}{1+i} by the complex conjugate of the denominator, 1-i.
Re(\left(\frac{-2-4i}{2}\right)^{3})
Do the multiplications in \frac{\left(1-3i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}.
Re(\left(-1-2i\right)^{3})
Divide -2-4i by 2 to get -1-2i.
Re(11+2i)
Calculate -1-2i to the power of 3 and get 11+2i.
11
The real part of 11+2i is 11.