Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(1-\sqrt{3}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{1-\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\left(1-\sqrt{3}\right)\sqrt{2}}{2}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(\left(1-\sqrt{3}\right)\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{\left(1-\sqrt{3}\right)\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(1-\sqrt{3}\right)^{2}\left(\sqrt{2}\right)^{2}}{2^{2}}
Expand \left(\left(1-\sqrt{3}\right)\sqrt{2}\right)^{2}.
\frac{\left(1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)\left(\sqrt{2}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\frac{\left(1-2\sqrt{3}+3\right)\left(\sqrt{2}\right)^{2}}{2^{2}}
The square of \sqrt{3} is 3.
\frac{\left(4-2\sqrt{3}\right)\left(\sqrt{2}\right)^{2}}{2^{2}}
Add 1 and 3 to get 4.
\frac{\left(4-2\sqrt{3}\right)\times 2}{2^{2}}
The square of \sqrt{2} is 2.
\frac{\left(4-2\sqrt{3}\right)\times 2}{4}
Calculate 2 to the power of 2 and get 4.
\left(4-2\sqrt{3}\right)\times \frac{1}{2}
Divide \left(4-2\sqrt{3}\right)\times 2 by 4 to get \left(4-2\sqrt{3}\right)\times \frac{1}{2}.
2-\sqrt{3}
Use the distributive property to multiply 4-2\sqrt{3} by \frac{1}{2}.
\left(\frac{\left(1-\sqrt{3}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{1-\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\left(1-\sqrt{3}\right)\sqrt{2}}{2}\right)^{2}
The square of \sqrt{2} is 2.
\frac{\left(\left(1-\sqrt{3}\right)\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{\left(1-\sqrt{3}\right)\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(1-\sqrt{3}\right)^{2}\left(\sqrt{2}\right)^{2}}{2^{2}}
Expand \left(\left(1-\sqrt{3}\right)\sqrt{2}\right)^{2}.
\frac{\left(1-2\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)\left(\sqrt{2}\right)^{2}}{2^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-\sqrt{3}\right)^{2}.
\frac{\left(1-2\sqrt{3}+3\right)\left(\sqrt{2}\right)^{2}}{2^{2}}
The square of \sqrt{3} is 3.
\frac{\left(4-2\sqrt{3}\right)\left(\sqrt{2}\right)^{2}}{2^{2}}
Add 1 and 3 to get 4.
\frac{\left(4-2\sqrt{3}\right)\times 2}{2^{2}}
The square of \sqrt{2} is 2.
\frac{\left(4-2\sqrt{3}\right)\times 2}{4}
Calculate 2 to the power of 2 and get 4.
\left(4-2\sqrt{3}\right)\times \frac{1}{2}
Divide \left(4-2\sqrt{3}\right)\times 2 by 4 to get \left(4-2\sqrt{3}\right)\times \frac{1}{2}.
2-\sqrt{3}
Use the distributive property to multiply 4-2\sqrt{3} by \frac{1}{2}.