Evaluate
1
Factor
1
Share
Copied to clipboard
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{6}}+\frac{\sqrt{3}-\sqrt{4}}{\sqrt{12}}+\frac{\sqrt{4}-\sqrt{5}}{\sqrt{20}}\right)\times \frac{5}{\sqrt{5}-5}
Rationalize the denominator of \frac{1-\sqrt{2}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{6}}+\frac{\sqrt{3}-\sqrt{4}}{\sqrt{12}}+\frac{\sqrt{4}-\sqrt{5}}{\sqrt{20}}\right)\times \frac{5}{\sqrt{5}-5}
The square of \sqrt{2} is 2.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{\left(\sqrt{6}\right)^{2}}+\frac{\sqrt{3}-\sqrt{4}}{\sqrt{12}}+\frac{\sqrt{4}-\sqrt{5}}{\sqrt{20}}\right)\times \frac{5}{\sqrt{5}-5}
Rationalize the denominator of \frac{\sqrt{2}-\sqrt{3}}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\sqrt{3}-\sqrt{4}}{\sqrt{12}}+\frac{\sqrt{4}-\sqrt{5}}{\sqrt{20}}\right)\times \frac{5}{\sqrt{5}-5}
The square of \sqrt{6} is 6.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\sqrt{3}-2}{\sqrt{12}}+\frac{\sqrt{4}-\sqrt{5}}{\sqrt{20}}\right)\times \frac{5}{\sqrt{5}-5}
Calculate the square root of 4 and get 2.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\sqrt{3}-2}{2\sqrt{3}}+\frac{\sqrt{4}-\sqrt{5}}{\sqrt{20}}\right)\times \frac{5}{\sqrt{5}-5}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}+\frac{\sqrt{4}-\sqrt{5}}{\sqrt{20}}\right)\times \frac{5}{\sqrt{5}-5}
Rationalize the denominator of \frac{\sqrt{3}-2}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{2\times 3}+\frac{\sqrt{4}-\sqrt{5}}{\sqrt{20}}\right)\times \frac{5}{\sqrt{5}-5}
The square of \sqrt{3} is 3.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{6}+\frac{\sqrt{4}-\sqrt{5}}{\sqrt{20}}\right)\times \frac{5}{\sqrt{5}-5}
Multiply 2 and 3 to get 6.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{6}+\frac{2-\sqrt{5}}{\sqrt{20}}\right)\times \frac{5}{\sqrt{5}-5}
Calculate the square root of 4 and get 2.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{6}+\frac{2-\sqrt{5}}{2\sqrt{5}}\right)\times \frac{5}{\sqrt{5}-5}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{6}+\frac{\left(2-\sqrt{5}\right)\sqrt{5}}{2\left(\sqrt{5}\right)^{2}}\right)\times \frac{5}{\sqrt{5}-5}
Rationalize the denominator of \frac{2-\sqrt{5}}{2\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{6}+\frac{\left(2-\sqrt{5}\right)\sqrt{5}}{2\times 5}\right)\times \frac{5}{\sqrt{5}-5}
The square of \sqrt{5} is 5.
\left(\frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{6}+\frac{\left(2-\sqrt{5}\right)\sqrt{5}}{10}\right)\times \frac{5}{\sqrt{5}-5}
Multiply 2 and 5 to get 10.
\left(\frac{3\left(1-\sqrt{2}\right)\sqrt{2}}{6}+\frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{6}+\frac{\left(2-\sqrt{5}\right)\sqrt{5}}{10}\right)\times \frac{5}{\sqrt{5}-5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 6 is 6. Multiply \frac{\left(1-\sqrt{2}\right)\sqrt{2}}{2} times \frac{3}{3}.
\left(\frac{3\left(1-\sqrt{2}\right)\sqrt{2}+\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{6}+\frac{\left(2-\sqrt{5}\right)\sqrt{5}}{10}\right)\times \frac{5}{\sqrt{5}-5}
Since \frac{3\left(1-\sqrt{2}\right)\sqrt{2}}{6} and \frac{\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}}{6} have the same denominator, add them by adding their numerators.
\left(\frac{3\sqrt{2}-6+2\sqrt{3}-3\sqrt{2}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{6}+\frac{\left(2-\sqrt{5}\right)\sqrt{5}}{10}\right)\times \frac{5}{\sqrt{5}-5}
Do the multiplications in 3\left(1-\sqrt{2}\right)\sqrt{2}+\left(\sqrt{2}-\sqrt{3}\right)\sqrt{6}.
\left(\frac{-6+2\sqrt{3}}{6}+\frac{\left(\sqrt{3}-2\right)\sqrt{3}}{6}+\frac{\left(2-\sqrt{5}\right)\sqrt{5}}{10}\right)\times \frac{5}{\sqrt{5}-5}
Do the calculations in 3\sqrt{2}-6+2\sqrt{3}-3\sqrt{2}.
\left(\frac{-6+2\sqrt{3}+\left(\sqrt{3}-2\right)\sqrt{3}}{6}+\frac{\left(2-\sqrt{5}\right)\sqrt{5}}{10}\right)\times \frac{5}{\sqrt{5}-5}
Since \frac{-6+2\sqrt{3}}{6} and \frac{\left(\sqrt{3}-2\right)\sqrt{3}}{6} have the same denominator, add them by adding their numerators.
\left(\frac{-6+2\sqrt{3}+3-2\sqrt{3}}{6}+\frac{\left(2-\sqrt{5}\right)\sqrt{5}}{10}\right)\times \frac{5}{\sqrt{5}-5}
Do the multiplications in -6+2\sqrt{3}+\left(\sqrt{3}-2\right)\sqrt{3}.
\left(\frac{-3}{6}+\frac{\left(2-\sqrt{5}\right)\sqrt{5}}{10}\right)\times \frac{5}{\sqrt{5}-5}
Do the calculations in -6+2\sqrt{3}+3-2\sqrt{3}.
\left(\frac{-3\times 5}{30}+\frac{3\left(2-\sqrt{5}\right)\sqrt{5}}{30}\right)\times \frac{5}{\sqrt{5}-5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and 10 is 30. Multiply \frac{-3}{6} times \frac{5}{5}. Multiply \frac{\left(2-\sqrt{5}\right)\sqrt{5}}{10} times \frac{3}{3}.
\frac{-3\times 5+3\left(2-\sqrt{5}\right)\sqrt{5}}{30}\times \frac{5}{\sqrt{5}-5}
Since \frac{-3\times 5}{30} and \frac{3\left(2-\sqrt{5}\right)\sqrt{5}}{30} have the same denominator, add them by adding their numerators.
\frac{-15+6\sqrt{5}-15}{30}\times \frac{5}{\sqrt{5}-5}
Do the multiplications in -3\times 5+3\left(2-\sqrt{5}\right)\sqrt{5}.
\frac{-30+6\sqrt{5}}{30}\times \frac{5}{\sqrt{5}-5}
Do the calculations in -15+6\sqrt{5}-15.
\frac{-30+6\sqrt{5}}{30}\times \frac{5\left(\sqrt{5}+5\right)}{\left(\sqrt{5}-5\right)\left(\sqrt{5}+5\right)}
Rationalize the denominator of \frac{5}{\sqrt{5}-5} by multiplying numerator and denominator by \sqrt{5}+5.
\frac{-30+6\sqrt{5}}{30}\times \frac{5\left(\sqrt{5}+5\right)}{\left(\sqrt{5}\right)^{2}-5^{2}}
Consider \left(\sqrt{5}-5\right)\left(\sqrt{5}+5\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-30+6\sqrt{5}}{30}\times \frac{5\left(\sqrt{5}+5\right)}{5-25}
Square \sqrt{5}. Square 5.
\frac{-30+6\sqrt{5}}{30}\times \frac{5\left(\sqrt{5}+5\right)}{-20}
Subtract 25 from 5 to get -20.
\frac{-30+6\sqrt{5}}{30}\left(-\frac{1}{4}\right)\left(\sqrt{5}+5\right)
Divide 5\left(\sqrt{5}+5\right) by -20 to get -\frac{1}{4}\left(\sqrt{5}+5\right).
\frac{-\left(-30+6\sqrt{5}\right)}{30\times 4}\left(\sqrt{5}+5\right)
Multiply \frac{-30+6\sqrt{5}}{30} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-30+6\sqrt{5}\right)\left(\sqrt{5}+5\right)}{30\times 4}
Express \frac{-\left(-30+6\sqrt{5}\right)}{30\times 4}\left(\sqrt{5}+5\right) as a single fraction.
\frac{-\left(-30+6\sqrt{5}\right)\left(\sqrt{5}+5\right)}{120}
Multiply 30 and 4 to get 120.
\frac{\left(30-6\sqrt{5}\right)\left(\sqrt{5}+5\right)}{120}
Use the distributive property to multiply -1 by -30+6\sqrt{5}.
\frac{30\sqrt{5}+150-6\left(\sqrt{5}\right)^{2}-30\sqrt{5}}{120}
Apply the distributive property by multiplying each term of 30-6\sqrt{5} by each term of \sqrt{5}+5.
\frac{30\sqrt{5}+150-6\times 5-30\sqrt{5}}{120}
The square of \sqrt{5} is 5.
\frac{30\sqrt{5}+150-30-30\sqrt{5}}{120}
Multiply -6 and 5 to get -30.
\frac{30\sqrt{5}+120-30\sqrt{5}}{120}
Subtract 30 from 150 to get 120.
\frac{120}{120}
Combine 30\sqrt{5} and -30\sqrt{5} to get 0.
1
Divide 120 by 120 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}