Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{x+4}{\left(x-3\right)\left(x+4\right)}+\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+4\right)}+\frac{14}{x+4}-\frac{5}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x-3 and x+4 is \left(x-3\right)\left(x+4\right). Multiply \frac{1}{x-3} times \frac{x+4}{x+4}. Multiply \frac{2}{x+4} times \frac{x-3}{x-3}.
\frac{x+4+2\left(x-3\right)}{\left(x-3\right)\left(x+4\right)}+\frac{14}{x+4}-\frac{5}{x+1}
Since \frac{x+4}{\left(x-3\right)\left(x+4\right)} and \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{x+4+2x-6}{\left(x-3\right)\left(x+4\right)}+\frac{14}{x+4}-\frac{5}{x+1}
Do the multiplications in x+4+2\left(x-3\right).
\frac{3x-2}{\left(x-3\right)\left(x+4\right)}+\frac{14}{x+4}-\frac{5}{x+1}
Combine like terms in x+4+2x-6.
\frac{3x-2}{\left(x-3\right)\left(x+4\right)}+\frac{14\left(x-3\right)}{\left(x-3\right)\left(x+4\right)}-\frac{5}{x+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+4\right) and x+4 is \left(x-3\right)\left(x+4\right). Multiply \frac{14}{x+4} times \frac{x-3}{x-3}.
\frac{3x-2+14\left(x-3\right)}{\left(x-3\right)\left(x+4\right)}-\frac{5}{x+1}
Since \frac{3x-2}{\left(x-3\right)\left(x+4\right)} and \frac{14\left(x-3\right)}{\left(x-3\right)\left(x+4\right)} have the same denominator, add them by adding their numerators.
\frac{3x-2+14x-42}{\left(x-3\right)\left(x+4\right)}-\frac{5}{x+1}
Do the multiplications in 3x-2+14\left(x-3\right).
\frac{17x-44}{\left(x-3\right)\left(x+4\right)}-\frac{5}{x+1}
Combine like terms in 3x-2+14x-42.
\frac{\left(17x-44\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+4\right)}-\frac{5\left(x-3\right)\left(x+4\right)}{\left(x-3\right)\left(x+1\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+4\right) and x+1 is \left(x-3\right)\left(x+1\right)\left(x+4\right). Multiply \frac{17x-44}{\left(x-3\right)\left(x+4\right)} times \frac{x+1}{x+1}. Multiply \frac{5}{x+1} times \frac{\left(x-3\right)\left(x+4\right)}{\left(x-3\right)\left(x+4\right)}.
\frac{\left(17x-44\right)\left(x+1\right)-5\left(x-3\right)\left(x+4\right)}{\left(x-3\right)\left(x+1\right)\left(x+4\right)}
Since \frac{\left(17x-44\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)\left(x+4\right)} and \frac{5\left(x-3\right)\left(x+4\right)}{\left(x-3\right)\left(x+1\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{17x^{2}+17x-44x-44-5x^{2}-20x+15x+60}{\left(x-3\right)\left(x+1\right)\left(x+4\right)}
Do the multiplications in \left(17x-44\right)\left(x+1\right)-5\left(x-3\right)\left(x+4\right).
\frac{12x^{2}-32x+16}{\left(x-3\right)\left(x+1\right)\left(x+4\right)}
Combine like terms in 17x^{2}+17x-44x-44-5x^{2}-20x+15x+60.
\frac{12x^{2}-32x+16}{x^{3}+2x^{2}-11x-12}
Expand \left(x-3\right)\left(x+1\right)\left(x+4\right).