Evaluate
\frac{\left(1-3x\right)\left(x+3\right)}{x^{2}}
Expand
-3-\frac{8}{x}+\frac{3}{x^{2}}
Graph
Share
Copied to clipboard
\left(\frac{1}{x}-\frac{3x}{x}\right)\left(\frac{3}{x}+1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x}{x}.
\frac{1-3x}{x}\left(\frac{3}{x}+1\right)
Since \frac{1}{x} and \frac{3x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{1-3x}{x}\left(\frac{3}{x}+\frac{x}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{1-3x}{x}\times \frac{3+x}{x}
Since \frac{3}{x} and \frac{x}{x} have the same denominator, add them by adding their numerators.
\frac{\left(1-3x\right)\left(3+x\right)}{xx}
Multiply \frac{1-3x}{x} times \frac{3+x}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(1-3x\right)\left(3+x\right)}{x^{2}}
Multiply x and x to get x^{2}.
\frac{3+x-9x-3x^{2}}{x^{2}}
Apply the distributive property by multiplying each term of 1-3x by each term of 3+x.
\frac{3-8x-3x^{2}}{x^{2}}
Combine x and -9x to get -8x.
\left(\frac{1}{x}-\frac{3x}{x}\right)\left(\frac{3}{x}+1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{x}{x}.
\frac{1-3x}{x}\left(\frac{3}{x}+1\right)
Since \frac{1}{x} and \frac{3x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{1-3x}{x}\left(\frac{3}{x}+\frac{x}{x}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{x}{x}.
\frac{1-3x}{x}\times \frac{3+x}{x}
Since \frac{3}{x} and \frac{x}{x} have the same denominator, add them by adding their numerators.
\frac{\left(1-3x\right)\left(3+x\right)}{xx}
Multiply \frac{1-3x}{x} times \frac{3+x}{x} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(1-3x\right)\left(3+x\right)}{x^{2}}
Multiply x and x to get x^{2}.
\frac{3+x-9x-3x^{2}}{x^{2}}
Apply the distributive property by multiplying each term of 1-3x by each term of 3+x.
\frac{3-8x-3x^{2}}{x^{2}}
Combine x and -9x to get -8x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}