Evaluate
\frac{3}{2}=1.5
Factor
\frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Share
Copied to clipboard
\frac{\frac{1}{\left(x-1\right)\left(x+1\right)}-\frac{2}{x\left(x+1\right)}-\frac{2}{x^{2}-x}}{\frac{1}{1-x}+\frac{1}{x+1}}
Factor x^{2}-1. Factor x^{2}+x.
\frac{\frac{x}{x\left(x-1\right)\left(x+1\right)}-\frac{2\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{2}{x^{2}-x}}{\frac{1}{1-x}+\frac{1}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+1\right) and x\left(x+1\right) is x\left(x-1\right)\left(x+1\right). Multiply \frac{1}{\left(x-1\right)\left(x+1\right)} times \frac{x}{x}. Multiply \frac{2}{x\left(x+1\right)} times \frac{x-1}{x-1}.
\frac{\frac{x-2\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)}-\frac{2}{x^{2}-x}}{\frac{1}{1-x}+\frac{1}{x+1}}
Since \frac{x}{x\left(x-1\right)\left(x+1\right)} and \frac{2\left(x-1\right)}{x\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x-2x+2}{x\left(x-1\right)\left(x+1\right)}-\frac{2}{x^{2}-x}}{\frac{1}{1-x}+\frac{1}{x+1}}
Do the multiplications in x-2\left(x-1\right).
\frac{\frac{-x+2}{x\left(x-1\right)\left(x+1\right)}-\frac{2}{x^{2}-x}}{\frac{1}{1-x}+\frac{1}{x+1}}
Combine like terms in x-2x+2.
\frac{\frac{-x+2}{x\left(x-1\right)\left(x+1\right)}-\frac{2}{x\left(x-1\right)}}{\frac{1}{1-x}+\frac{1}{x+1}}
Factor x^{2}-x.
\frac{\frac{-x+2}{x\left(x-1\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}}{\frac{1}{1-x}+\frac{1}{x+1}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x\left(x-1\right)\left(x+1\right) and x\left(x-1\right) is x\left(x-1\right)\left(x+1\right). Multiply \frac{2}{x\left(x-1\right)} times \frac{x+1}{x+1}.
\frac{\frac{-x+2-2\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)}}{\frac{1}{1-x}+\frac{1}{x+1}}
Since \frac{-x+2}{x\left(x-1\right)\left(x+1\right)} and \frac{2\left(x+1\right)}{x\left(x-1\right)\left(x+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-x+2-2x-2}{x\left(x-1\right)\left(x+1\right)}}{\frac{1}{1-x}+\frac{1}{x+1}}
Do the multiplications in -x+2-2\left(x+1\right).
\frac{\frac{-3x}{x\left(x-1\right)\left(x+1\right)}}{\frac{1}{1-x}+\frac{1}{x+1}}
Combine like terms in -x+2-2x-2.
\frac{\frac{-3}{\left(x-1\right)\left(x+1\right)}}{\frac{1}{1-x}+\frac{1}{x+1}}
Cancel out x in both numerator and denominator.
\frac{\frac{-3}{\left(x-1\right)\left(x+1\right)}}{\frac{x+1}{\left(x+1\right)\left(-x+1\right)}+\frac{-x+1}{\left(x+1\right)\left(-x+1\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 1-x and x+1 is \left(x+1\right)\left(-x+1\right). Multiply \frac{1}{1-x} times \frac{x+1}{x+1}. Multiply \frac{1}{x+1} times \frac{-x+1}{-x+1}.
\frac{\frac{-3}{\left(x-1\right)\left(x+1\right)}}{\frac{x+1-x+1}{\left(x+1\right)\left(-x+1\right)}}
Since \frac{x+1}{\left(x+1\right)\left(-x+1\right)} and \frac{-x+1}{\left(x+1\right)\left(-x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-3}{\left(x-1\right)\left(x+1\right)}}{\frac{2}{\left(x+1\right)\left(-x+1\right)}}
Combine like terms in x+1-x+1.
\frac{-3\left(x+1\right)\left(-x+1\right)}{\left(x-1\right)\left(x+1\right)\times 2}
Divide \frac{-3}{\left(x-1\right)\left(x+1\right)} by \frac{2}{\left(x+1\right)\left(-x+1\right)} by multiplying \frac{-3}{\left(x-1\right)\left(x+1\right)} by the reciprocal of \frac{2}{\left(x+1\right)\left(-x+1\right)}.
\frac{-3\left(-1\right)\left(x-1\right)\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)}
Extract the negative sign in -x+1.
\frac{-3\left(-1\right)}{2}
Cancel out \left(x-1\right)\left(x+1\right) in both numerator and denominator.
\frac{3}{2}
Multiply -3 and -1 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}