Evaluate
\frac{2\left(x+1\right)}{x-1}
Expand
\frac{2\left(x+1\right)}{x-1}
Graph
Share
Copied to clipboard
\frac{\frac{1}{\left(x-1\right)\left(x+2\right)}-\frac{1}{2x\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Factor x^{2}+x-2. Factor 2x^{2}+4x.
\frac{\frac{2x}{2x\left(x-1\right)\left(x+2\right)}-\frac{x-1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and 2x\left(x+2\right) is 2x\left(x-1\right)\left(x+2\right). Multiply \frac{1}{\left(x-1\right)\left(x+2\right)} times \frac{2x}{2x}. Multiply \frac{1}{2x\left(x+2\right)} times \frac{x-1}{x-1}.
\frac{\frac{2x-\left(x-1\right)}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Since \frac{2x}{2x\left(x-1\right)\left(x+2\right)} and \frac{x-1}{2x\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x-x+1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Do the multiplications in 2x-\left(x-1\right).
\frac{\frac{x+1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Combine like terms in 2x-x+1.
\frac{\left(x+1\right)\left(4x^{2}+8x\right)}{2x\left(x-1\right)\left(x+2\right)}
Divide \frac{x+1}{2x\left(x-1\right)\left(x+2\right)} by \frac{1}{4x^{2}+8x} by multiplying \frac{x+1}{2x\left(x-1\right)\left(x+2\right)} by the reciprocal of \frac{1}{4x^{2}+8x}.
\frac{4x\left(x+1\right)\left(x+2\right)}{2x\left(x-1\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{2\left(x+1\right)}{x-1}
Cancel out 2x\left(x+2\right) in both numerator and denominator.
\frac{2x+2}{x-1}
Expand the expression.
\frac{\frac{1}{\left(x-1\right)\left(x+2\right)}-\frac{1}{2x\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Factor x^{2}+x-2. Factor 2x^{2}+4x.
\frac{\frac{2x}{2x\left(x-1\right)\left(x+2\right)}-\frac{x-1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and 2x\left(x+2\right) is 2x\left(x-1\right)\left(x+2\right). Multiply \frac{1}{\left(x-1\right)\left(x+2\right)} times \frac{2x}{2x}. Multiply \frac{1}{2x\left(x+2\right)} times \frac{x-1}{x-1}.
\frac{\frac{2x-\left(x-1\right)}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Since \frac{2x}{2x\left(x-1\right)\left(x+2\right)} and \frac{x-1}{2x\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x-x+1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Do the multiplications in 2x-\left(x-1\right).
\frac{\frac{x+1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Combine like terms in 2x-x+1.
\frac{\left(x+1\right)\left(4x^{2}+8x\right)}{2x\left(x-1\right)\left(x+2\right)}
Divide \frac{x+1}{2x\left(x-1\right)\left(x+2\right)} by \frac{1}{4x^{2}+8x} by multiplying \frac{x+1}{2x\left(x-1\right)\left(x+2\right)} by the reciprocal of \frac{1}{4x^{2}+8x}.
\frac{4x\left(x+1\right)\left(x+2\right)}{2x\left(x-1\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{2\left(x+1\right)}{x-1}
Cancel out 2x\left(x+2\right) in both numerator and denominator.
\frac{2x+2}{x-1}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}