Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{1}{\left(x-1\right)\left(x+2\right)}-\frac{1}{2x\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Factor x^{2}+x-2. Factor 2x^{2}+4x.
\frac{\frac{2x}{2x\left(x-1\right)\left(x+2\right)}-\frac{x-1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and 2x\left(x+2\right) is 2x\left(x-1\right)\left(x+2\right). Multiply \frac{1}{\left(x-1\right)\left(x+2\right)} times \frac{2x}{2x}. Multiply \frac{1}{2x\left(x+2\right)} times \frac{x-1}{x-1}.
\frac{\frac{2x-\left(x-1\right)}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Since \frac{2x}{2x\left(x-1\right)\left(x+2\right)} and \frac{x-1}{2x\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x-x+1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Do the multiplications in 2x-\left(x-1\right).
\frac{\frac{x+1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Combine like terms in 2x-x+1.
\frac{\left(x+1\right)\left(4x^{2}+8x\right)}{2x\left(x-1\right)\left(x+2\right)}
Divide \frac{x+1}{2x\left(x-1\right)\left(x+2\right)} by \frac{1}{4x^{2}+8x} by multiplying \frac{x+1}{2x\left(x-1\right)\left(x+2\right)} by the reciprocal of \frac{1}{4x^{2}+8x}.
\frac{4x\left(x+1\right)\left(x+2\right)}{2x\left(x-1\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{2\left(x+1\right)}{x-1}
Cancel out 2x\left(x+2\right) in both numerator and denominator.
\frac{2x+2}{x-1}
Expand the expression.
\frac{\frac{1}{\left(x-1\right)\left(x+2\right)}-\frac{1}{2x\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Factor x^{2}+x-2. Factor 2x^{2}+4x.
\frac{\frac{2x}{2x\left(x-1\right)\left(x+2\right)}-\frac{x-1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-1\right)\left(x+2\right) and 2x\left(x+2\right) is 2x\left(x-1\right)\left(x+2\right). Multiply \frac{1}{\left(x-1\right)\left(x+2\right)} times \frac{2x}{2x}. Multiply \frac{1}{2x\left(x+2\right)} times \frac{x-1}{x-1}.
\frac{\frac{2x-\left(x-1\right)}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Since \frac{2x}{2x\left(x-1\right)\left(x+2\right)} and \frac{x-1}{2x\left(x-1\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2x-x+1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Do the multiplications in 2x-\left(x-1\right).
\frac{\frac{x+1}{2x\left(x-1\right)\left(x+2\right)}}{\frac{1}{4x^{2}+8x}}
Combine like terms in 2x-x+1.
\frac{\left(x+1\right)\left(4x^{2}+8x\right)}{2x\left(x-1\right)\left(x+2\right)}
Divide \frac{x+1}{2x\left(x-1\right)\left(x+2\right)} by \frac{1}{4x^{2}+8x} by multiplying \frac{x+1}{2x\left(x-1\right)\left(x+2\right)} by the reciprocal of \frac{1}{4x^{2}+8x}.
\frac{4x\left(x+1\right)\left(x+2\right)}{2x\left(x-1\right)\left(x+2\right)}
Factor the expressions that are not already factored.
\frac{2\left(x+1\right)}{x-1}
Cancel out 2x\left(x+2\right) in both numerator and denominator.
\frac{2x+2}{x-1}
Expand the expression.