Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{-x+3}{\left(x+3\right)\left(-x+3\right)}+\frac{x+3}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and 3-x is \left(x+3\right)\left(-x+3\right). Multiply \frac{1}{x+3} times \frac{-x+3}{-x+3}. Multiply \frac{1}{3-x} times \frac{x+3}{x+3}.
\frac{\frac{-x+3+x+3}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
Since \frac{-x+3}{\left(x+3\right)\left(-x+3\right)} and \frac{x+3}{\left(x+3\right)\left(-x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{6}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
Combine like terms in -x+3+x+3.
\frac{6\left(x^{2}-9\right)}{\left(x+3\right)\left(-x+3\right)x}
Divide \frac{6}{\left(x+3\right)\left(-x+3\right)} by \frac{x}{x^{2}-9} by multiplying \frac{6}{\left(x+3\right)\left(-x+3\right)} by the reciprocal of \frac{x}{x^{2}-9}.
\frac{6\left(x-3\right)\left(x+3\right)}{x\left(x+3\right)\left(-x+3\right)}
Factor the expressions that are not already factored.
\frac{-6\left(x+3\right)\left(-x+3\right)}{x\left(x+3\right)\left(-x+3\right)}
Extract the negative sign in -3+x.
\frac{-6}{x}
Cancel out \left(x+3\right)\left(-x+3\right) in both numerator and denominator.
\frac{\frac{-x+3}{\left(x+3\right)\left(-x+3\right)}+\frac{x+3}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and 3-x is \left(x+3\right)\left(-x+3\right). Multiply \frac{1}{x+3} times \frac{-x+3}{-x+3}. Multiply \frac{1}{3-x} times \frac{x+3}{x+3}.
\frac{\frac{-x+3+x+3}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
Since \frac{-x+3}{\left(x+3\right)\left(-x+3\right)} and \frac{x+3}{\left(x+3\right)\left(-x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{6}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
Combine like terms in -x+3+x+3.
\frac{6\left(x^{2}-9\right)}{\left(x+3\right)\left(-x+3\right)x}
Divide \frac{6}{\left(x+3\right)\left(-x+3\right)} by \frac{x}{x^{2}-9} by multiplying \frac{6}{\left(x+3\right)\left(-x+3\right)} by the reciprocal of \frac{x}{x^{2}-9}.
\frac{6\left(x-3\right)\left(x+3\right)}{x\left(x+3\right)\left(-x+3\right)}
Factor the expressions that are not already factored.
\frac{-6\left(x+3\right)\left(-x+3\right)}{x\left(x+3\right)\left(-x+3\right)}
Extract the negative sign in -3+x.
\frac{-6}{x}
Cancel out \left(x+3\right)\left(-x+3\right) in both numerator and denominator.