Evaluate
-\frac{6}{x}
Expand
-\frac{6}{x}
Graph
Share
Copied to clipboard
\frac{\frac{-x+3}{\left(x+3\right)\left(-x+3\right)}+\frac{x+3}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and 3-x is \left(x+3\right)\left(-x+3\right). Multiply \frac{1}{x+3} times \frac{-x+3}{-x+3}. Multiply \frac{1}{3-x} times \frac{x+3}{x+3}.
\frac{\frac{-x+3+x+3}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
Since \frac{-x+3}{\left(x+3\right)\left(-x+3\right)} and \frac{x+3}{\left(x+3\right)\left(-x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{6}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
Combine like terms in -x+3+x+3.
\frac{6\left(x^{2}-9\right)}{\left(x+3\right)\left(-x+3\right)x}
Divide \frac{6}{\left(x+3\right)\left(-x+3\right)} by \frac{x}{x^{2}-9} by multiplying \frac{6}{\left(x+3\right)\left(-x+3\right)} by the reciprocal of \frac{x}{x^{2}-9}.
\frac{6\left(x-3\right)\left(x+3\right)}{x\left(x+3\right)\left(-x+3\right)}
Factor the expressions that are not already factored.
\frac{-6\left(x+3\right)\left(-x+3\right)}{x\left(x+3\right)\left(-x+3\right)}
Extract the negative sign in -3+x.
\frac{-6}{x}
Cancel out \left(x+3\right)\left(-x+3\right) in both numerator and denominator.
\frac{\frac{-x+3}{\left(x+3\right)\left(-x+3\right)}+\frac{x+3}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and 3-x is \left(x+3\right)\left(-x+3\right). Multiply \frac{1}{x+3} times \frac{-x+3}{-x+3}. Multiply \frac{1}{3-x} times \frac{x+3}{x+3}.
\frac{\frac{-x+3+x+3}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
Since \frac{-x+3}{\left(x+3\right)\left(-x+3\right)} and \frac{x+3}{\left(x+3\right)\left(-x+3\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{6}{\left(x+3\right)\left(-x+3\right)}}{\frac{x}{x^{2}-9}}
Combine like terms in -x+3+x+3.
\frac{6\left(x^{2}-9\right)}{\left(x+3\right)\left(-x+3\right)x}
Divide \frac{6}{\left(x+3\right)\left(-x+3\right)} by \frac{x}{x^{2}-9} by multiplying \frac{6}{\left(x+3\right)\left(-x+3\right)} by the reciprocal of \frac{x}{x^{2}-9}.
\frac{6\left(x-3\right)\left(x+3\right)}{x\left(x+3\right)\left(-x+3\right)}
Factor the expressions that are not already factored.
\frac{-6\left(x+3\right)\left(-x+3\right)}{x\left(x+3\right)\left(-x+3\right)}
Extract the negative sign in -3+x.
\frac{-6}{x}
Cancel out \left(x+3\right)\left(-x+3\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}