Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{m+n}{\left(m+n\right)\left(m-n\right)}-\frac{m-n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-n and m+n is \left(m+n\right)\left(m-n\right). Multiply \frac{1}{m-n} times \frac{m+n}{m+n}. Multiply \frac{1}{m+n} times \frac{m-n}{m-n}.
\frac{\frac{m+n-\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Since \frac{m+n}{\left(m+n\right)\left(m-n\right)} and \frac{m-n}{\left(m+n\right)\left(m-n\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m+n-m+n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Do the multiplications in m+n-\left(m-n\right).
\frac{\frac{2n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Combine like terms in m+n-m+n.
\frac{2n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)\times 2}
Divide \frac{2n}{\left(m+n\right)\left(m-n\right)} by \frac{2}{3m-3n} by multiplying \frac{2n}{\left(m+n\right)\left(m-n\right)} by the reciprocal of \frac{2}{3m-3n}.
\frac{n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)}
Cancel out 2 in both numerator and denominator.
\frac{3n\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}
Factor the expressions that are not already factored.
\frac{3n}{m+n}
Cancel out m-n in both numerator and denominator.
\frac{\frac{m+n}{\left(m+n\right)\left(m-n\right)}-\frac{m-n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-n and m+n is \left(m+n\right)\left(m-n\right). Multiply \frac{1}{m-n} times \frac{m+n}{m+n}. Multiply \frac{1}{m+n} times \frac{m-n}{m-n}.
\frac{\frac{m+n-\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Since \frac{m+n}{\left(m+n\right)\left(m-n\right)} and \frac{m-n}{\left(m+n\right)\left(m-n\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{m+n-m+n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Do the multiplications in m+n-\left(m-n\right).
\frac{\frac{2n}{\left(m+n\right)\left(m-n\right)}}{\frac{2}{3m-3n}}
Combine like terms in m+n-m+n.
\frac{2n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)\times 2}
Divide \frac{2n}{\left(m+n\right)\left(m-n\right)} by \frac{2}{3m-3n} by multiplying \frac{2n}{\left(m+n\right)\left(m-n\right)} by the reciprocal of \frac{2}{3m-3n}.
\frac{n\left(3m-3n\right)}{\left(m+n\right)\left(m-n\right)}
Cancel out 2 in both numerator and denominator.
\frac{3n\left(m-n\right)}{\left(m+n\right)\left(m-n\right)}
Factor the expressions that are not already factored.
\frac{3n}{m+n}
Cancel out m-n in both numerator and denominator.