Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{1}{a-b}-\frac{b}{\left(a+b\right)\left(a-b\right)}}{\frac{a^{2}-ab}{a^{2}-2ab+b^{2}}}
Factor a^{2}-b^{2}.
\frac{\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{b}{\left(a+b\right)\left(a-b\right)}}{\frac{a^{2}-ab}{a^{2}-2ab+b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and \left(a+b\right)\left(a-b\right) is \left(a+b\right)\left(a-b\right). Multiply \frac{1}{a-b} times \frac{a+b}{a+b}.
\frac{\frac{a+b-b}{\left(a+b\right)\left(a-b\right)}}{\frac{a^{2}-ab}{a^{2}-2ab+b^{2}}}
Since \frac{a+b}{\left(a+b\right)\left(a-b\right)} and \frac{b}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a}{\left(a+b\right)\left(a-b\right)}}{\frac{a^{2}-ab}{a^{2}-2ab+b^{2}}}
Combine like terms in a+b-b.
\frac{\frac{a}{\left(a+b\right)\left(a-b\right)}}{\frac{a\left(a-b\right)}{\left(a-b\right)^{2}}}
Factor the expressions that are not already factored in \frac{a^{2}-ab}{a^{2}-2ab+b^{2}}.
\frac{\frac{a}{\left(a+b\right)\left(a-b\right)}}{\frac{a}{a-b}}
Cancel out a-b in both numerator and denominator.
\frac{a\left(a-b\right)}{\left(a+b\right)\left(a-b\right)a}
Divide \frac{a}{\left(a+b\right)\left(a-b\right)} by \frac{a}{a-b} by multiplying \frac{a}{\left(a+b\right)\left(a-b\right)} by the reciprocal of \frac{a}{a-b}.
\frac{1}{a+b}
Cancel out a\left(a-b\right) in both numerator and denominator.
\frac{\frac{1}{a-b}-\frac{b}{\left(a+b\right)\left(a-b\right)}}{\frac{a^{2}-ab}{a^{2}-2ab+b^{2}}}
Factor a^{2}-b^{2}.
\frac{\frac{a+b}{\left(a+b\right)\left(a-b\right)}-\frac{b}{\left(a+b\right)\left(a-b\right)}}{\frac{a^{2}-ab}{a^{2}-2ab+b^{2}}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-b and \left(a+b\right)\left(a-b\right) is \left(a+b\right)\left(a-b\right). Multiply \frac{1}{a-b} times \frac{a+b}{a+b}.
\frac{\frac{a+b-b}{\left(a+b\right)\left(a-b\right)}}{\frac{a^{2}-ab}{a^{2}-2ab+b^{2}}}
Since \frac{a+b}{\left(a+b\right)\left(a-b\right)} and \frac{b}{\left(a+b\right)\left(a-b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{a}{\left(a+b\right)\left(a-b\right)}}{\frac{a^{2}-ab}{a^{2}-2ab+b^{2}}}
Combine like terms in a+b-b.
\frac{\frac{a}{\left(a+b\right)\left(a-b\right)}}{\frac{a\left(a-b\right)}{\left(a-b\right)^{2}}}
Factor the expressions that are not already factored in \frac{a^{2}-ab}{a^{2}-2ab+b^{2}}.
\frac{\frac{a}{\left(a+b\right)\left(a-b\right)}}{\frac{a}{a-b}}
Cancel out a-b in both numerator and denominator.
\frac{a\left(a-b\right)}{\left(a+b\right)\left(a-b\right)a}
Divide \frac{a}{\left(a+b\right)\left(a-b\right)} by \frac{a}{a-b} by multiplying \frac{a}{\left(a+b\right)\left(a-b\right)} by the reciprocal of \frac{a}{a-b}.
\frac{1}{a+b}
Cancel out a\left(a-b\right) in both numerator and denominator.