Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{a+1}-\frac{2a}{\left(a-1\right)\left(a+1\right)}\right)\left(\frac{1}{a}-1\right)
Factor a^{2}-1.
\left(\frac{a-1}{\left(a-1\right)\left(a+1\right)}-\frac{2a}{\left(a-1\right)\left(a+1\right)}\right)\left(\frac{1}{a}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-1\right)\left(a+1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{1}{a+1} times \frac{a-1}{a-1}.
\frac{a-1-2a}{\left(a-1\right)\left(a+1\right)}\left(\frac{1}{a}-1\right)
Since \frac{a-1}{\left(a-1\right)\left(a+1\right)} and \frac{2a}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-a-1}{\left(a-1\right)\left(a+1\right)}\left(\frac{1}{a}-1\right)
Combine like terms in a-1-2a.
\frac{-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\left(\frac{1}{a}-1\right)
Extract the negative sign in -a-1.
\frac{-1}{a-1}\left(\frac{1}{a}-1\right)
Cancel out a+1 in both numerator and denominator.
\frac{-1}{a-1}\left(\frac{1}{a}-\frac{a}{a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{-1}{a-1}\times \frac{1-a}{a}
Since \frac{1}{a} and \frac{a}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{-\left(1-a\right)}{\left(a-1\right)a}
Multiply \frac{-1}{a-1} times \frac{1-a}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-1\right)\left(a-1\right)}{a\left(a-1\right)}
Extract the negative sign in 1-a.
\frac{-\left(-1\right)}{a}
Cancel out a-1 in both numerator and denominator.
\frac{1}{a}
Multiply -1 and -1 to get 1.
\left(\frac{1}{a+1}-\frac{2a}{\left(a-1\right)\left(a+1\right)}\right)\left(\frac{1}{a}-1\right)
Factor a^{2}-1.
\left(\frac{a-1}{\left(a-1\right)\left(a+1\right)}-\frac{2a}{\left(a-1\right)\left(a+1\right)}\right)\left(\frac{1}{a}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+1 and \left(a-1\right)\left(a+1\right) is \left(a-1\right)\left(a+1\right). Multiply \frac{1}{a+1} times \frac{a-1}{a-1}.
\frac{a-1-2a}{\left(a-1\right)\left(a+1\right)}\left(\frac{1}{a}-1\right)
Since \frac{a-1}{\left(a-1\right)\left(a+1\right)} and \frac{2a}{\left(a-1\right)\left(a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-a-1}{\left(a-1\right)\left(a+1\right)}\left(\frac{1}{a}-1\right)
Combine like terms in a-1-2a.
\frac{-\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}\left(\frac{1}{a}-1\right)
Extract the negative sign in -a-1.
\frac{-1}{a-1}\left(\frac{1}{a}-1\right)
Cancel out a+1 in both numerator and denominator.
\frac{-1}{a-1}\left(\frac{1}{a}-\frac{a}{a}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
\frac{-1}{a-1}\times \frac{1-a}{a}
Since \frac{1}{a} and \frac{a}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{-\left(1-a\right)}{\left(a-1\right)a}
Multiply \frac{-1}{a-1} times \frac{1-a}{a} by multiplying numerator times numerator and denominator times denominator.
\frac{-\left(-1\right)\left(a-1\right)}{a\left(a-1\right)}
Extract the negative sign in 1-a.
\frac{-\left(-1\right)}{a}
Cancel out a-1 in both numerator and denominator.
\frac{1}{a}
Multiply -1 and -1 to get 1.