Solve for x
x=-42
Graph
Share
Copied to clipboard
\left(\frac{1}{8}+\frac{7}{x+6}\right)\times 4\times 8\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Variable x cannot be equal to -6 since division by zero is not defined. Multiply both sides of the equation by 8\left(x+6\right), the least common multiple of 8,x+6.
\left(\frac{x+6}{8\left(x+6\right)}+\frac{7\times 8}{8\left(x+6\right)}\right)\times 4\times 8\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8 and x+6 is 8\left(x+6\right). Multiply \frac{1}{8} times \frac{x+6}{x+6}. Multiply \frac{7}{x+6} times \frac{8}{8}.
\frac{x+6+7\times 8}{8\left(x+6\right)}\times 4\times 8\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Since \frac{x+6}{8\left(x+6\right)} and \frac{7\times 8}{8\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{x+6+56}{8\left(x+6\right)}\times 4\times 8\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Do the multiplications in x+6+7\times 8.
\frac{x+62}{8\left(x+6\right)}\times 4\times 8\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Combine like terms in x+6+56.
\frac{x+62}{8\left(x+6\right)}\times 32\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Multiply 4 and 8 to get 32.
\frac{\left(x+62\right)\times 32}{8\left(x+6\right)}\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Express \frac{x+62}{8\left(x+6\right)}\times 32 as a single fraction.
\frac{4\left(x+62\right)}{x+6}\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Cancel out 8 in both numerator and denominator.
\frac{4\left(x+62\right)\left(x+6\right)}{x+6}+8\times 1\left(x-4\right)=8\left(x+6\right)
Express \frac{4\left(x+62\right)}{x+6}\left(x+6\right) as a single fraction.
\frac{4\left(x+62\right)\left(x+6\right)}{x+6}+8\left(x-4\right)=8\left(x+6\right)
Multiply 8 and 1 to get 8.
\frac{4\left(x+62\right)\left(x+6\right)}{x+6}+8x-32=8\left(x+6\right)
Use the distributive property to multiply 8 by x-4.
\frac{4\left(x+62\right)\left(x+6\right)}{x+6}+\frac{\left(8x-32\right)\left(x+6\right)}{x+6}=8\left(x+6\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 8x-32 times \frac{x+6}{x+6}.
\frac{4\left(x+62\right)\left(x+6\right)+\left(8x-32\right)\left(x+6\right)}{x+6}=8\left(x+6\right)
Since \frac{4\left(x+62\right)\left(x+6\right)}{x+6} and \frac{\left(8x-32\right)\left(x+6\right)}{x+6} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+24x+248x+1488+8x^{2}+48x-32x-192}{x+6}=8\left(x+6\right)
Do the multiplications in 4\left(x+62\right)\left(x+6\right)+\left(8x-32\right)\left(x+6\right).
\frac{12x^{2}+288x+1296}{x+6}=8\left(x+6\right)
Combine like terms in 4x^{2}+24x+248x+1488+8x^{2}+48x-32x-192.
\frac{12x^{2}+288x+1296}{x+6}=8x+48
Use the distributive property to multiply 8 by x+6.
\frac{12x^{2}+288x+1296}{x+6}-8x=48
Subtract 8x from both sides.
\frac{12x^{2}+288x+1296}{x+6}+\frac{-8x\left(x+6\right)}{x+6}=48
To add or subtract expressions, expand them to make their denominators the same. Multiply -8x times \frac{x+6}{x+6}.
\frac{12x^{2}+288x+1296-8x\left(x+6\right)}{x+6}=48
Since \frac{12x^{2}+288x+1296}{x+6} and \frac{-8x\left(x+6\right)}{x+6} have the same denominator, add them by adding their numerators.
\frac{12x^{2}+288x+1296-8x^{2}-48x}{x+6}=48
Do the multiplications in 12x^{2}+288x+1296-8x\left(x+6\right).
\frac{4x^{2}+240x+1296}{x+6}=48
Combine like terms in 12x^{2}+288x+1296-8x^{2}-48x.
\frac{4x^{2}+240x+1296}{x+6}-48=0
Subtract 48 from both sides.
\frac{4x^{2}+240x+1296}{x+6}-\frac{48\left(x+6\right)}{x+6}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 48 times \frac{x+6}{x+6}.
\frac{4x^{2}+240x+1296-48\left(x+6\right)}{x+6}=0
Since \frac{4x^{2}+240x+1296}{x+6} and \frac{48\left(x+6\right)}{x+6} have the same denominator, subtract them by subtracting their numerators.
\frac{4x^{2}+240x+1296-48x-288}{x+6}=0
Do the multiplications in 4x^{2}+240x+1296-48\left(x+6\right).
\frac{4x^{2}+192x+1008}{x+6}=0
Combine like terms in 4x^{2}+240x+1296-48x-288.
4x^{2}+192x+1008=0
Variable x cannot be equal to -6 since division by zero is not defined. Multiply both sides of the equation by x+6.
x=\frac{-192±\sqrt{192^{2}-4\times 4\times 1008}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, 192 for b, and 1008 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-192±\sqrt{36864-4\times 4\times 1008}}{2\times 4}
Square 192.
x=\frac{-192±\sqrt{36864-16\times 1008}}{2\times 4}
Multiply -4 times 4.
x=\frac{-192±\sqrt{36864-16128}}{2\times 4}
Multiply -16 times 1008.
x=\frac{-192±\sqrt{20736}}{2\times 4}
Add 36864 to -16128.
x=\frac{-192±144}{2\times 4}
Take the square root of 20736.
x=\frac{-192±144}{8}
Multiply 2 times 4.
x=-\frac{48}{8}
Now solve the equation x=\frac{-192±144}{8} when ± is plus. Add -192 to 144.
x=-6
Divide -48 by 8.
x=-\frac{336}{8}
Now solve the equation x=\frac{-192±144}{8} when ± is minus. Subtract 144 from -192.
x=-42
Divide -336 by 8.
x=-6 x=-42
The equation is now solved.
x=-42
Variable x cannot be equal to -6.
\left(\frac{1}{8}+\frac{7}{x+6}\right)\times 4\times 8\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Variable x cannot be equal to -6 since division by zero is not defined. Multiply both sides of the equation by 8\left(x+6\right), the least common multiple of 8,x+6.
\left(\frac{x+6}{8\left(x+6\right)}+\frac{7\times 8}{8\left(x+6\right)}\right)\times 4\times 8\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8 and x+6 is 8\left(x+6\right). Multiply \frac{1}{8} times \frac{x+6}{x+6}. Multiply \frac{7}{x+6} times \frac{8}{8}.
\frac{x+6+7\times 8}{8\left(x+6\right)}\times 4\times 8\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Since \frac{x+6}{8\left(x+6\right)} and \frac{7\times 8}{8\left(x+6\right)} have the same denominator, add them by adding their numerators.
\frac{x+6+56}{8\left(x+6\right)}\times 4\times 8\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Do the multiplications in x+6+7\times 8.
\frac{x+62}{8\left(x+6\right)}\times 4\times 8\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Combine like terms in x+6+56.
\frac{x+62}{8\left(x+6\right)}\times 32\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Multiply 4 and 8 to get 32.
\frac{\left(x+62\right)\times 32}{8\left(x+6\right)}\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Express \frac{x+62}{8\left(x+6\right)}\times 32 as a single fraction.
\frac{4\left(x+62\right)}{x+6}\left(x+6\right)+8\times 1\left(x-4\right)=8\left(x+6\right)
Cancel out 8 in both numerator and denominator.
\frac{4\left(x+62\right)\left(x+6\right)}{x+6}+8\times 1\left(x-4\right)=8\left(x+6\right)
Express \frac{4\left(x+62\right)}{x+6}\left(x+6\right) as a single fraction.
\frac{4\left(x+62\right)\left(x+6\right)}{x+6}+8\left(x-4\right)=8\left(x+6\right)
Multiply 8 and 1 to get 8.
\frac{4\left(x+62\right)\left(x+6\right)}{x+6}+8x-32=8\left(x+6\right)
Use the distributive property to multiply 8 by x-4.
\frac{4\left(x+62\right)\left(x+6\right)}{x+6}+\frac{\left(8x-32\right)\left(x+6\right)}{x+6}=8\left(x+6\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 8x-32 times \frac{x+6}{x+6}.
\frac{4\left(x+62\right)\left(x+6\right)+\left(8x-32\right)\left(x+6\right)}{x+6}=8\left(x+6\right)
Since \frac{4\left(x+62\right)\left(x+6\right)}{x+6} and \frac{\left(8x-32\right)\left(x+6\right)}{x+6} have the same denominator, add them by adding their numerators.
\frac{4x^{2}+24x+248x+1488+8x^{2}+48x-32x-192}{x+6}=8\left(x+6\right)
Do the multiplications in 4\left(x+62\right)\left(x+6\right)+\left(8x-32\right)\left(x+6\right).
\frac{12x^{2}+288x+1296}{x+6}=8\left(x+6\right)
Combine like terms in 4x^{2}+24x+248x+1488+8x^{2}+48x-32x-192.
\frac{12x^{2}+288x+1296}{x+6}=8x+48
Use the distributive property to multiply 8 by x+6.
\frac{12x^{2}+288x+1296}{x+6}-8x=48
Subtract 8x from both sides.
\frac{12x^{2}+288x+1296}{x+6}+\frac{-8x\left(x+6\right)}{x+6}=48
To add or subtract expressions, expand them to make their denominators the same. Multiply -8x times \frac{x+6}{x+6}.
\frac{12x^{2}+288x+1296-8x\left(x+6\right)}{x+6}=48
Since \frac{12x^{2}+288x+1296}{x+6} and \frac{-8x\left(x+6\right)}{x+6} have the same denominator, add them by adding their numerators.
\frac{12x^{2}+288x+1296-8x^{2}-48x}{x+6}=48
Do the multiplications in 12x^{2}+288x+1296-8x\left(x+6\right).
\frac{4x^{2}+240x+1296}{x+6}=48
Combine like terms in 12x^{2}+288x+1296-8x^{2}-48x.
4x^{2}+240x+1296=48\left(x+6\right)
Variable x cannot be equal to -6 since division by zero is not defined. Multiply both sides of the equation by x+6.
4x^{2}+240x+1296=48x+288
Use the distributive property to multiply 48 by x+6.
4x^{2}+240x+1296-48x=288
Subtract 48x from both sides.
4x^{2}+192x+1296=288
Combine 240x and -48x to get 192x.
4x^{2}+192x=288-1296
Subtract 1296 from both sides.
4x^{2}+192x=-1008
Subtract 1296 from 288 to get -1008.
\frac{4x^{2}+192x}{4}=-\frac{1008}{4}
Divide both sides by 4.
x^{2}+\frac{192}{4}x=-\frac{1008}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+48x=-\frac{1008}{4}
Divide 192 by 4.
x^{2}+48x=-252
Divide -1008 by 4.
x^{2}+48x+24^{2}=-252+24^{2}
Divide 48, the coefficient of the x term, by 2 to get 24. Then add the square of 24 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+48x+576=-252+576
Square 24.
x^{2}+48x+576=324
Add -252 to 576.
\left(x+24\right)^{2}=324
Factor x^{2}+48x+576. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+24\right)^{2}}=\sqrt{324}
Take the square root of both sides of the equation.
x+24=18 x+24=-18
Simplify.
x=-6 x=-42
Subtract 24 from both sides of the equation.
x=-42
Variable x cannot be equal to -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}