Evaluate
y^{2}-\frac{y}{7}-1+\frac{1}{7y}
Expand
y^{2}-\frac{y}{7}-1+\frac{1}{7y}
Graph
Share
Copied to clipboard
\left(\frac{1}{7}-y\right)\left(\frac{1}{y}-\frac{yy}{y}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y}{y}.
\left(\frac{1}{7}-y\right)\times \frac{1-yy}{y}
Since \frac{1}{y} and \frac{yy}{y} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{1}{7}-y\right)\times \frac{1-y^{2}}{y}
Do the multiplications in 1-yy.
\frac{1}{7}\times \frac{1-y^{2}}{y}-y\times \frac{1-y^{2}}{y}
Use the distributive property to multiply \frac{1}{7}-y by \frac{1-y^{2}}{y}.
\frac{1-y^{2}}{7y}-y\times \frac{1-y^{2}}{y}
Multiply \frac{1}{7} times \frac{1-y^{2}}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{1-y^{2}}{7y}-\left(1-y^{2}\right)
Cancel out y and y.
\frac{1-y^{2}}{7y}-1-\left(-y^{2}\right)
To find the opposite of 1-y^{2}, find the opposite of each term.
\frac{1-y^{2}}{7y}-1+y^{2}
The opposite of -y^{2} is y^{2}.
\frac{1-y^{2}}{7y}+\frac{\left(-1+y^{2}\right)\times 7y}{7y}
To add or subtract expressions, expand them to make their denominators the same. Multiply -1+y^{2} times \frac{7y}{7y}.
\frac{1-y^{2}+\left(-1+y^{2}\right)\times 7y}{7y}
Since \frac{1-y^{2}}{7y} and \frac{\left(-1+y^{2}\right)\times 7y}{7y} have the same denominator, add them by adding their numerators.
\frac{1-y^{2}-7y+7y^{3}}{7y}
Do the multiplications in 1-y^{2}+\left(-1+y^{2}\right)\times 7y.
\left(\frac{1}{7}-y\right)\left(\frac{1}{y}-\frac{yy}{y}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply y times \frac{y}{y}.
\left(\frac{1}{7}-y\right)\times \frac{1-yy}{y}
Since \frac{1}{y} and \frac{yy}{y} have the same denominator, subtract them by subtracting their numerators.
\left(\frac{1}{7}-y\right)\times \frac{1-y^{2}}{y}
Do the multiplications in 1-yy.
\frac{1}{7}\times \frac{1-y^{2}}{y}-y\times \frac{1-y^{2}}{y}
Use the distributive property to multiply \frac{1}{7}-y by \frac{1-y^{2}}{y}.
\frac{1-y^{2}}{7y}-y\times \frac{1-y^{2}}{y}
Multiply \frac{1}{7} times \frac{1-y^{2}}{y} by multiplying numerator times numerator and denominator times denominator.
\frac{1-y^{2}}{7y}-\left(1-y^{2}\right)
Cancel out y and y.
\frac{1-y^{2}}{7y}-1-\left(-y^{2}\right)
To find the opposite of 1-y^{2}, find the opposite of each term.
\frac{1-y^{2}}{7y}-1+y^{2}
The opposite of -y^{2} is y^{2}.
\frac{1-y^{2}}{7y}+\frac{\left(-1+y^{2}\right)\times 7y}{7y}
To add or subtract expressions, expand them to make their denominators the same. Multiply -1+y^{2} times \frac{7y}{7y}.
\frac{1-y^{2}+\left(-1+y^{2}\right)\times 7y}{7y}
Since \frac{1-y^{2}}{7y} and \frac{\left(-1+y^{2}\right)\times 7y}{7y} have the same denominator, add them by adding their numerators.
\frac{1-y^{2}-7y+7y^{3}}{7y}
Do the multiplications in 1-y^{2}+\left(-1+y^{2}\right)\times 7y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}