Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{7}+\frac{2}{5}x+\left(x-2x\right)\left(x^{2}-5x-\frac{1}{5}\right)-\left(\frac{3x-7}{3}\right)^{2}
Anything divided by one gives itself.
\frac{1}{7}+\frac{2}{5}x-x\left(x^{2}-5x-\frac{1}{5}\right)-\left(\frac{3x-7}{3}\right)^{2}
Combine x and -2x to get -x.
\frac{1}{7}+\frac{2}{5}x-x^{3}+5x^{2}+\frac{1}{5}x-\left(\frac{3x-7}{3}\right)^{2}
Use the distributive property to multiply -x by x^{2}-5x-\frac{1}{5}.
\frac{1}{7}+\frac{3}{5}x-x^{3}+5x^{2}-\left(\frac{3x-7}{3}\right)^{2}
Combine \frac{2}{5}x and \frac{1}{5}x to get \frac{3}{5}x.
\frac{1}{7}+\frac{3}{5}x-x^{3}+5x^{2}-\frac{\left(3x-7\right)^{2}}{3^{2}}
To raise \frac{3x-7}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{7}+\frac{3}{5}x-x^{3}+5x^{2}-\frac{\left(3x-7\right)^{2}}{9}
Calculate 3 to the power of 2 and get 9.
\frac{9}{63}+\frac{3}{5}x-x^{3}+5x^{2}-\frac{7\left(3x-7\right)^{2}}{63}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 9 is 63. Multiply \frac{1}{7} times \frac{9}{9}. Multiply \frac{\left(3x-7\right)^{2}}{9} times \frac{7}{7}.
\frac{9-7\left(3x-7\right)^{2}}{63}+\frac{3}{5}x-x^{3}+5x^{2}
Since \frac{9}{63} and \frac{7\left(3x-7\right)^{2}}{63} have the same denominator, subtract them by subtracting their numerators.
\frac{9-63x^{2}+294x-343}{63}+\frac{3}{5}x-x^{3}+5x^{2}
Do the multiplications in 9-7\left(3x-7\right)^{2}.
\frac{-334-63x^{2}+294x}{63}+\frac{3}{5}x-x^{3}+5x^{2}
Combine like terms in 9-63x^{2}+294x-343.
-\frac{334}{63}-x^{2}+\frac{14}{3}x+\frac{3}{5}x-x^{3}+5x^{2}
Divide each term of -334-63x^{2}+294x by 63 to get -\frac{334}{63}-x^{2}+\frac{14}{3}x.
-\frac{334}{63}-x^{2}+\frac{79}{15}x-x^{3}+5x^{2}
Combine \frac{14}{3}x and \frac{3}{5}x to get \frac{79}{15}x.
-\frac{334}{63}+4x^{2}+\frac{79}{15}x-x^{3}
Combine -x^{2} and 5x^{2} to get 4x^{2}.
\frac{1}{7}+\frac{2}{5}x+\left(x-2x\right)\left(x^{2}-5x-\frac{1}{5}\right)-\left(\frac{3x-7}{3}\right)^{2}
Anything divided by one gives itself.
\frac{1}{7}+\frac{2}{5}x-x\left(x^{2}-5x-\frac{1}{5}\right)-\left(\frac{3x-7}{3}\right)^{2}
Combine x and -2x to get -x.
\frac{1}{7}+\frac{2}{5}x-x^{3}+5x^{2}+\frac{1}{5}x-\left(\frac{3x-7}{3}\right)^{2}
Use the distributive property to multiply -x by x^{2}-5x-\frac{1}{5}.
\frac{1}{7}+\frac{3}{5}x-x^{3}+5x^{2}-\left(\frac{3x-7}{3}\right)^{2}
Combine \frac{2}{5}x and \frac{1}{5}x to get \frac{3}{5}x.
\frac{1}{7}+\frac{3}{5}x-x^{3}+5x^{2}-\frac{\left(3x-7\right)^{2}}{3^{2}}
To raise \frac{3x-7}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{7}+\frac{3}{5}x-x^{3}+5x^{2}-\frac{\left(3x-7\right)^{2}}{9}
Calculate 3 to the power of 2 and get 9.
\frac{9}{63}+\frac{3}{5}x-x^{3}+5x^{2}-\frac{7\left(3x-7\right)^{2}}{63}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 9 is 63. Multiply \frac{1}{7} times \frac{9}{9}. Multiply \frac{\left(3x-7\right)^{2}}{9} times \frac{7}{7}.
\frac{9-7\left(3x-7\right)^{2}}{63}+\frac{3}{5}x-x^{3}+5x^{2}
Since \frac{9}{63} and \frac{7\left(3x-7\right)^{2}}{63} have the same denominator, subtract them by subtracting their numerators.
\frac{9-63x^{2}+294x-343}{63}+\frac{3}{5}x-x^{3}+5x^{2}
Do the multiplications in 9-7\left(3x-7\right)^{2}.
\frac{-334-63x^{2}+294x}{63}+\frac{3}{5}x-x^{3}+5x^{2}
Combine like terms in 9-63x^{2}+294x-343.
-\frac{334}{63}-x^{2}+\frac{14}{3}x+\frac{3}{5}x-x^{3}+5x^{2}
Divide each term of -334-63x^{2}+294x by 63 to get -\frac{334}{63}-x^{2}+\frac{14}{3}x.
-\frac{334}{63}-x^{2}+\frac{79}{15}x-x^{3}+5x^{2}
Combine \frac{14}{3}x and \frac{3}{5}x to get \frac{79}{15}x.
-\frac{334}{63}+4x^{2}+\frac{79}{15}x-x^{3}
Combine -x^{2} and 5x^{2} to get 4x^{2}.