Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{1}{5}\right)^{-1}+\left(1+\sqrt{3}\right)^{2}-\sqrt{12}
Multiply 1+\sqrt{3} and 1+\sqrt{3} to get \left(1+\sqrt{3}\right)^{2}.
5+\left(1+\sqrt{3}\right)^{2}-\sqrt{12}
Calculate \frac{1}{5} to the power of -1 and get 5.
5+1+2\sqrt{3}+\left(\sqrt{3}\right)^{2}-\sqrt{12}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{3}\right)^{2}.
5+1+2\sqrt{3}+3-\sqrt{12}
The square of \sqrt{3} is 3.
5+4+2\sqrt{3}-\sqrt{12}
Add 1 and 3 to get 4.
9+2\sqrt{3}-\sqrt{12}
Add 5 and 4 to get 9.
9+2\sqrt{3}-2\sqrt{3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
9
Combine 2\sqrt{3} and -2\sqrt{3} to get 0.